
FACULT Y OF

COMPUTER SCIENCE Communication and 
Networked Systems C 

o m S s y 

Communication and Networked Systems

Thesis

Design, implementation and testing of a CoAP
library on a constrained system for air quality

measurements

Lars Hübner

Supervisor: Prof. Dr. rer. nat. Mesut Güneş
Assisting Supervisor: MSc. Kai Kientopf

Institute for Intelligent Cooperating Systems, Otto-von-Guericke-University Magdeburg

July 31, 2019





Abstract

Constrained Application Protocol (CoAP) is an Internet of Things (IoT) protocol for use
on constrained devices. We explore if it could be used as a viable alternative to Hypertext
Transfer Protocol (HTTP) on an esp8266 based air quality sensor. Therefore, we use
the luftdaten.info project that provides assembly instructions and a firmware for measuring
particulate matter concentrations using an esp8266 and a SDS011. We extend this firmware
with a self written library to support CoAP. Furthermore, we us a cross-protocol proxy to
push sensor values to the HTTP based Application Programming Interface (API).
In comparison to the HTTP base version, our implementation requires less flash memory.
When using CoAP it takes longer to push values to the API because it takes some time
to construct a CoAP message and a full HTTP exchange still takes place. CoAP uses
less bandwidth than HTTP. Largely because of the smaller header size in User Datagram
Protocol (UDP) but also because of how CoAP encodes information.
We implement and test the CoAP observe extension. Notifications are triggered using a
threshold based strategy. The observe extension saves a large number of exchanges espe-
cially when monitoring temperature or humidity.
CoAP can be used in combination with a cross-protocol proxy to work on a HTTP API
especially when no custom options are required. When bandwidth is of importance, it is
also suitable.
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CHAPTER 1

Introduction

In recent times it has become clear, that particulate matter pollution has severe adverse
health effects[1]. So measuring particulate matter pollution is an important task.
Policymakers and citizens could benefit from improved data quantity. We could measure
the effectiveness of policies and improve public health measures. For example, there have
already been a number of driving bans due to high particulate matter concentration and
cities started to ban certain vehicles in low emission zones[2]. Such measures are contro-
versial and the ability to independently analyze or proof their effectiveness could be very
useful.
At the same time small devices have become more widespread. The Internet of Things
(IoT) can be applied to a wide range of problems, including measuring air quality data.
Low cost of devices makes them accessible to a lot of people.
With the Hypertext Transfer Protocol (HTTP) on the Transfer Control Protocol (TCP)/
Internet Protocol (IP) stack there is already an established infrastructure. A large number
of projects depend on this technology however the advent of IoT led to the development of
a number of specialized technologies.
The luftdaten.info project is such an effort based on existing technologies. We will explore
whether a more IoT specific approach could be beneficial. To that purpose we develop a
Constrained Application Protocol (CoAP) library and use it to replace some of the functions
on the Airrohr-firmware.

1.1 IoT

Though the concept has been established earlier, IoT is a term that was coined by Kevin
Ashton in 1999[3]. The idea is that all possible devices will be connected to the internet
and to each other which allows for a wide range of applications, for example, in home au-
tomation, production control, environmental monitoring, logistics ,or energy management.
Researchers predict a large increase in connected devices during the coming years[4].
These devices need to be cheap and energy efficient because they may need to be powered
by battery and communicate over a wireless network. Reducing the amount of transmitted
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7-5 Application layer HTTP, CoAP
4 Transport TCP, UDP, DTLS
3 Network IP
2 Data link Ethernet, IEEE 802.11
1 Physical

Figure 1.1: OSI Layers

data is an important part of lowering the energy consumption.

1.2 Hardware

The luftdaten.info project is being developed by OK Lab Stuttgart, a non-profit organiza-
tion that uses open data to further public interest. It provides assembly instructions along
with a firmware to provide a low cost solution for measuring air quality data for public
and personal use. The collected data is then aggregated and displayed in a map. Readings
are also accessible via a Representational State Transfer (REST) Application Program-
ming Interface (API). This firmware is called Airrohr-firmware and is based on the Arduino
platform.
A minimal setup consists of an esp8266 that functions as a base and 1 particulate mat-
ter sensor. Functionality can be extended by adding other sensors, displays ,or a Global
Positioning System (GPS) module. In this project the following components will be used:

• The esp8266, a low cost WiFi chip with a TCP/IP stack.
• A DHT11 for measuring temperature and humidity.
• The SDS011 for measuring particle concentration.

The esp8266 uses a 32-bit RISC CPU running at 160 MHz. It typically has between 512KiB
and 4MiB flash memory.
The Arduino core for esp8266 project makes it possible to program an esp8266 using the
Arduino platform.

1.3 Protocols and OSI Layer Model

The Open Systems Interconnection model (OSI model) is a conceptual model to visualize
the interdependencies of networking systems shown in Figure 1.1.
The Internet Protocol is network layer protocol that delivers data packets from source to
destination based on IP addresses.

1.3.1 TCP

TCP provides a reliable, ordered, error-checked stream of bytes. Most World Wide Web
(WWW) applications rely on TCP and it is usually encapsulated in IP. TCP is connection
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based so each time a connection is established a handshake needs to be performed which
leads to considerable overhead if a lot of short connections need to be made[5]. If packets
are lost or corrupted in transmission, they need to be retransmitted. To correct the order
or detect if packets are missing, each TCP header has an acknowledgment and a sequence
number.
To detect data corruption a checksum is used.
For supporting all of those features TCP needs relatively large headers. A header without
options is 20 bytes long[6].

1.3.2 UDP

User Datagram Protocol (UDP) is a datagram based, connection less protocol. Addressing
is based on IP. It is not reliable and non secure. Like TCP it also has a checksum for error
detection in each packet, but if other features are needed, they need to be handled in the
application layer.
However, it is much lighter than TCP which makes it an appropriate choice for IoT use
cases.

1.3.3 HTTP

The HTTP is an application layer protocol primarily intended to transfer documents in
the WWW[7]. It follows a request-response paradigm, meaning endpoints will take the
roles of client and server. Clients can make requests by sending a string with the method
name followed by the Uniform Resource Identifier (URI) and the protocol version. This is
optionally followed by a number of header fields and a message body. Line break characters
mark the end of a line and there is a blank line between the message body and the initial
part. The server then responds with a status code and also with header and payload data.
HTTP assumes that the underlying transport layer protocol is reliable. So bytes sent stay
the same and their order is intact. It is normally used on top of TCP/IP.
HTTP specifies a number of methods which tell the server what action should be performed
on the request’s resource. A URI is used to reference the resource.
Among others, clients can use the following methods:

• GET: Retrieve representation of a resource. No other effects.
• POST: Submit enclosed payload to resource.
• PUT: Replace or update the representation with payload.
• DELETE: Remove the indicated resource.

The GET method is safe so it should not change the state of a server. GET, PUT and
DELETE are idempotent which means that multiple application of the methods with the
same parameters should lead to the same outcome.
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REST

HTTP follows the REST architectural style, a term that was defined by Roy Fielding[8]. It
states constraints that, when followed, lead to a number of useful properties.
For example the constrained that a client-server architecture should be used leads to a
decoupling of components which allows them to be separately developed. Another constraint
is statelessness. Each request should contain all information necessary to process it. This
improves scalability because a server does not have to maintain client status data anymore.

1.4 CoAP

CoAP is part of the Constrained RESTful Environments (CoRE) project[9]. It is designed
to be simple and lightweight but still extensible so that it can be used on systems with very
limited resources.
Like HTTP, CoAP uses the REST style. However, opposed to HTTP it uses an asyn-
chronous messaging model.

1.4.1 Message Structure

CoAP aims to reduce message fragmentation by reducing message overhead. Each message
has a 4 byte header followed by a number of optional elements. Among others, information
about the CoAP version and the messages code is part of the header.
The code field contains either a method or a response code. Those codes are divided into
classes. The first 3 bits of the message code represent the general class while the remaining
5 provide more detail.
Messages can be identified by a message Identifier (ID) and a token. The message ID which
is part of the header should be used for deduplication.
A token should serve as an exchange identifier for the client in case the request-response
pair spans multiple messages. This is used in, for example, CoAP observe or blockwise
transfer. Tokens should be non trivial to prevent possible spoofing and they are at most 8
bytes long which allows for one-time use throughout client lifetime[10]. Their length is part
of the header.
A number of options are specified each of which has a 1 or 2 byte header depending on the
options’ length.
A payload marker separates the rest of the package from a possible payload.
Figure 1.2 shows how these elements are arranged in a packet.

1.4.2 Message Types

There are 4 different message types: Confirmable (CON), Non-confirmable (NON), Ac-
knowledgement (ACK), and Reset (RST). NON messages can be used if reliability is not
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Figure 1.2: CoAP message structure

required. CON messages expect a response to compensate for UDP’s lack of reliability.
This response needs to be either an ACK or a RST. The former will be sent if a message
has been received and processed correctly, while the latter indicates that the server has
received a request but can’t process it because it lacks context. Clients can also intention-
ally trigger a RST message to get information about the server’s liveliness. This concept is
called CoAP-Ping.

1.4.3 Method Names and REST

CoAP specifies a generic web protocol which realizes a subset of REST. As with HTTP,
data can be modified with the methods GET, PUT, DELETE and POST. Because of that
similarity, web resources can easily be used through intermediaries.
The methods defined are:

• GET: Retrieves a resource representation for the specified resource ID.
• POST: Process the resource representation. That usually means create.
• PUT: Create or update enclosed representation.
• DELETE: Requests that the resource should be deleted.

1.4.4 Messaging Model

The client-server model used by CoAP is similar to the one of Hypertext Markup Language
(HTML). Clients send requests to the server which processes the request and responds.
Ordering is not guaranteed because UDP is used to transport the CoAP messages. With
tokens and message IDs CoAP provides a mechanism to match requests with responses.
CoAP can be seen as a two-layer system where a message layer deals with UDP’s lossy and
asynchronous nature while a request response layer specifies message codes.
A CON will be retransmitted until it can be matched to an ACK or RST response. For
communication where reliability is not needed NON messages can be used. A server will
still respond with RST if it is not able to process the message.
CoAP’s interaction model follows the client-server scheme. A CoAP request sends a method
code to the server which returns a response code.
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0 1 2 3 4 5 6 7

Option Delta Option Length
Option Delta extended
Option Length extended

Option Value

Figure 1.3: CoAP option structure. In case of option delta or length larger than 12, the extended
fields will be used.

1.4.5 Options

Each CoAP message can have a number of options. Options consist of a number and an
elemental data type which can be either opaque data, a string, an integer, or an empty
value along with its length.
Some options have default values which can be assumed to be set, so they don’t need to be
included in the message. Options such as the Uri-Path can be included multiple times.
Each option has a 1 byte header which contains information about both option number and
option length. Because we only have 4 bits for each value, the first byte can be followed
by additional option number and length information. Figure 1.3 shows how options are
structured.

Option classes

It is a feature of CoAP that option numbers provide information about their class. Options
can be either elective or critical. Unrecognized elective options will be silently ignored
while unrecognized critical options result in a error responses. Options with even number
are elective while options with odd numbers are critical.

Delta Encoding

Option numbers won’t be used directly. To save bandwidth only an option delta will be used
for each option. The option number is the sum of its delta and preceding options number.
Therefore, the option number can be calculated by summing up all previous option deltas.

1.5 Reliability

Since CoAP works on top of UDP, a mechanism for dealing with lossy environments is
specified. If no ACK is received, requests will be retransmitted with exponential back-
off. That means: each time the retransmission timeout is reached, the request will be
retransmitted with the retransmission timeout doubled, until either the maximum number
of retransmissions is reached or we receive a ACK or RST. Reliable messages need to be
marked as CON. A recipient must either respond with an ACK or send a RST if the request
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can not be processed. If the sender receives no response, the message will be resent in
exponentially increasing intervals until the maximum number of retransmission is reached.

1.6 Observe

CoAP’s Observe extension allows one to continuously receive updates to a resource without
sending a request each time[11]. Messages that update a resource status are called notifica-
tion. The observe option controls behavior depending on whether it is part of a request or
a notification. If the observe option is set to 0 in a request, the endpoint shows its desire
to receive a notification when the observed resource changes. One indicates that the client
does not wish to receive further updates.
In a response the presence of the Observe Option shows that the message is a notification
while the option value allows the client to reorder messages so that their order is equal to
the one in which they were sent.

1.7 Proxy operation

A proxy server acts as an intermediary in the request-response pattern.
Forward proxies relay requests on behalf of local clients to external resources. They are
also often used for caching. Reverse proxies relay requests to multiple servers. They are
transparent to a client meaning it won’t be aware that it is communicating with a proxy.
A cross protocol proxy allows translation of one protocol into another.
Since CoAP closely follows the REST paradigm it is possible to map CoAP method names
to HTTP method names. Similary we can map response codes, data types and URIs.
This allows us to use a CoAP to HTTP cross-protocol proxy to access web-resources and
translate the responses back to CoAP. Therefore, a cross proxy needs to understand both
CoAP and HTTP[12].
The CoAP specification provides several options to indicate how proxy servers should handle
messages. When the Proxy-Uri option is present, a proxy server will forward the request
to this URI. The Proxy-Scheme option allows clients to construct the URI by creating a
CoAP-URI from Uri-* options and replacing the original URI scheme with the one specified
via option.





CHAPTER 2

Implementation

The primary goal of this work is to include CoAP capabilities into the Airrohr-firmware.
To realize that, we need to create a library that is able to run in the Arduino environment.
That leads to a number of restrictions:

• C++ program code.
• No multithreading: block as short as possible.
• Networking: on Arduino we have to use the WiFi interface provided, so we can not use

a multi platform networking socket. In this case we use the WiFiUPD class provided
by Arduino core for esp8266.

2.1 Airrohr-Firmware

It reads each configured sensor every 145 seconds and sends the data to a REST web service.
The CoAP extension should enable individual queries of sensor data. It returns the last
available value. Alternatively it can send a separate response once a value gets updated.
The Airrohr-firmware saves a JavaScript Object Notation (JSON) configuration file which
persists between hardware resets. This file contains information about attached sensors,
WiFi authentication data, APIs to use as well as the interval to push sensor values. De-
pending on the sensor, the Airrohr-firmware uses an external library or talks directly to the
device.
If there is no existing configuration or no connection can be established to a configured
WiFi network, a soft access point will be hosted to provide a configuration interface.
To serve web pages to a user a number of helper functions have been defined. Those
functions build a HTML document.
In the Arduino environment a program consists of a setup function, that is being run once,
and a loop function, that runs continuously.
Setup phase:

1. Serial Input/output (IO).
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2. Read configuration file.
3. Initialize optional external displays.
4. Start web server.
5. Connect to WiFi.
6. Synchronize with Network Time Protocol (NTP) server.
7. Run HTTP auto update.
8. Create Auth strings.
9. MDNS: add service HTTP on TCP port 80.
10. Initialize timekeeping variables.

Loop phase:
1. Update timekeeping variables.
2. Every second: check whether air quality sensors need to be started because they

require warm-up time.
3. Handle outstanding HTTP requests.
4. Temperature and humidity sensors deliver a result immediately, so they are only

checked when a data string needs to be generated.
For every connected sensor its value is appended to a JSON formatted string. If pushing
to the luftdaten.info API is enabled, we additionally send a single HTTP POST request
for every sensor. This request can contain multiple readings. In our case we send 1 request
that contains temperature and humidity and 1 request that contains particulate matter
concentrations. During this time the web server is disabled.

5. Stop web server.
6. Send to luftdaten.info API.
7. Send to optional APIs.
8. Restart web server.
9. Check for auto update.
10. Check if WiFi still connected.
11. Reset for next sampling.

2.2 Development setup

The Airrohr-firmware is written in the Arduino IDE. Because of that, most functionality
is in an .ino file which is a combination of a C++ header and source file. To simplify the
development process we use PlatformIO development tools.
To increase turnaround time, simplify debugging and to provide a simple testbed for the
library, we use a small program that runs on a system supporting Boost.Asio[13] and the
standard C++ threads library. We use Boost.Asio for its network abstraction and the
threads library to interact with the loop while keeping its structure similar to an Arduino
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program. Listing 2.1 shows how to set up a simple CoAP server.
We can check weather we are building for a Linux Personal Computer (PC) or the esp8266
by using #ifdefs ESP8266 and __linux__. This allows us to use the same codebase for
offline testing and deployment to the esp8266.

1 #include <coap>
2 Coap coap(5683); // Create coap object that listens on port 5683
3
4 // Example callback function: create a response message based on the incomming request
5 Message get_hello(Message p_request) {
6 std::string s = "World"; // Create response payload
7 std::vector<uint8_t> payload(s.begin(), s.end());
8
9 Message resp;

10 resp.init(p_request); // Mirror token, ID & set destination
11 resp.set_type(Message::TYPE::ACKNOWLEDGEMENT); // Set response message type
12 resp.set_code(69); // 2.05 Content
13 resp.set_payload(payload); // Allways respond with "World"
14 return resp;
15 };
16
17 void setup() {
18 coap.begin();
19 coap.get("/hello", get_hello);
20 }
21
22 void loop() {
23 coap.work();
24 }
25
26 int main(int argc, char** argv) {
27 setup();
28 while(true) loop();
29 return 0;
30 }

Listing 2.1: Shows how to use the CoAP library to respond with ”World” if we receive a GET request
with the URI ”/hello”.

2.3 CoAP Library

On the Arduino platform there are already a number of librarys following a request response
model most notably the HTTP server module. Because of CoAP’s close connection to HTTP
we try to keep the programmer facing part similar.
The simplest way of getting sensor values from the device with CoAP is requesting them
with a CON-GET request with a piggybacked response. This task can be broken down into
the following steps:

1. Read incoming datagram from UDP socket.
2. Create a usable data structure from raw UDP payload.
3. Handle the request. In this case: Retrieve sensor value and create a response.
4. Convert the response to raw byte data.
5. Send response back to source of request.
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We also want to use some of CoAPs extra features to simplify testing and increase compat-
ibility with generic CoAP client implementations.

• Respond to a CoAP ping.
• Respond to a .well-known/core query with a list of available resources.

Responding to a CoAP ping means answering with RST to an empty GET. To do that, we
need a way to add Options to the response.
Based on these requirements we create a basic structure for the library.

2.3.1 Basic Structure

To implement the request-response model we need the ability to send and receive valid
CoAP messages. One UDP packet contains exactly 1 CoAP message so whenever there are
bytes available to read, the buffer contains at least one CoAP packet. Both WiFiUDP and
Boost.Asio allow reading the payload of one such packet even if more packets are buffered.

Input: UDP socket
if bytes available then

buffer ← read packet from socket;
message ← construct-message(buffer) ; /* Call Algorithm 2 */
handle message ; /* Call Algorithm 4 */

end
Algorithm 1: General structure

Input: byte array with message
Result: message object
create message object with information from CoAP header;
if token length > 0 then

copy token;
end
parse options ; /* Call Algorithm 3 */

Algorithm 2: Construct message

Algorithm 1 outlines the main server loop. Algorithm 4 shows how we create a message
object. For that we need to parse the messages options which is show in Algorithm 3.
Now that we have the information of a message in a usable format, we can decide how
to process it. If the incoming message is a GET request, we need to generate a response
depending on the Uri-Path. Because this is a library, users need to be able to supply a
programmatic response. In this library we keep a key-value map of function objects with a
URI string as key and callback functions as value. A callback function takes a message as
parameter and must return a CoAP message which will be sent back to the endpoint of the
original request. A function is provided that allows users to add such key-value pairs. To



13

Input: byte array containing CoAP message
Result: message with options set
start at beginning of option block;
while not at the end of packet do

get option delta and option length from option header;
switch option delta do

case 13 do option delta = next byte + 13;
case 14 do option delta = next 2 bytes + 269;
case 15 do possible payload marker;

end
switch option length do

case 13 do option length = next byte + 13;
case 14 do option length = next 2 bytes + 269;

end
calculate option number;
convert option payload data to C++ data type;
add option to message;

end
Algorithm 3: Option parsing. Because of CoAP’s delta encoding, we need to get all
options in a single pass.

get keys in the correct format, we need to create the URI string from all Uri-Path options
of the request.
We can also use this structure to get a list of valid URIs. During the initialization phase
we add a function object with the string ”/.well-known/core” as key, which creates a list of
all keys and sends it back in core-link-format[14].
If the request is malformed or can not be processed, we answer with appropriate error or
reset messages. For example: if we receive an empty CON message, we respond with RST.
This behavior is also used as a liveliness test (CoAP-Ping). If we don’t want to send a
response we can just return. The message handling process is shown in Algorithm 4.
Sending works by taking a message object and creating a valid CoAP packet from it. We
basically reverse the receiving process. Because options will be stored in a vector and
constructed by iterating through it, the programmer needs to add options in the correct
order.

2.3.2 Confirmable

Communication in lossy networks is one of CoAPs central features. To implement that, we
need to keep track of some additional information. Unanswered requests will be stored in
a vector of messages. We also add variables for a retransmission counter, the point in time
when another attempt to deliver the message will be made and the destination endpoint.
The standard C++ chrono library will be used to keep track of the elapsed time. CoAP
gives us default values for transmission parameters. So confirmable sending is initiated by
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Input: request message class instance
Output: response message
if type of request = ACK then

clean up outstanding CON sends;
update timeouts for observers;

else
switch message code do

case 0 do
send RST ; /* CoAP Ping */

case 1 do
construct URI string from Uri-Path elements;
create response by getting and applying callback functino from key-value
map;

otherwise do
send RST;

end
end
if type of resonse = CON then

send to destination;
add to send queue;

else
send to destination;

end
end

Algorithm 4: Message handling
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settings these values and adding the message to the send queue.
Messages will be erased from the queue when we receive an ACK or RST that matches
message IDs, if the retransmission counter reaches its maximum allowed value or the whole
process exceeds the maximum transmit span parameter.

2.3.3 Classes

We define a number of classes to structure the libraries functionality.
Users create 1 instance of the CoAP class with the desired port number as a parameter.
The Message class represents a CoAP message. It provides functions to query and set
header and option information in standard C++ data types. Additionally it contains the
retransmission counter, timeout information and its destination IP address and port.
The Options class is a collection of all options set for the current message. It provides
functions to get option values and set values and their corresponding option number.

2.3.4 Options

CoAP options use 3 different elemental data types.
• Opaque for which we use a byte vector.
• String for which we use std::string.
• Unsigned integer where we use uint32_t.

Some options can also be empty.
Repeatable options may appear multiple times. In this case we save the value in a vector
of the underlying data type. Set and get functions handle management of that process.
Repeatable options are added in the order in which the user sets them.

2.3.5 Observe

To keep track of observers and their status we need to store the token of the original request,
the IP address, the port number and timeout information.
The user creates an observable object and 2 support functions. One function returns a
Message that contains a notification with the updated resource. Every time the resource
status changes, this Message will get sent to all observing endpoints with their respective
token filled in. We set the observe option value to the least 3 bytes of the elapsed time as
recommended by the specification [11].
The other function handles basic management of the observable object. If a GET indicates
an observe request, we add the source of this request to the list of observers along with
its token and send the first notification. Likewise, the message source will be removed if it
unsubscribes.
If we receive an ACK to a notification, we reset the timeout information. Clients that do
not respond to notifications will be removed from the list of observers when their timeout
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exceeds a threshold.

2.4 Client

To retrieve readings with a client, we set up the Airrohr-firmware so that each sensor gets
a URI.
While generic CoAP clients can be used in this example we use openHAB and the eclipse
Californium framework to implement a client.
openHAB is an OSGi based home automation solution. Because Californium is available
for the OSGi infrastructure we can directly use it in an openHAB binding. We implement
a channel for each provided measurement. Then we establish CoAP observe relationships
for each channel and update the channel status with content from the notifications.



CHAPTER 3

Evaluation

We want to analyze whether it could be beneficial to supplant HTTP based communications
functionality with CoAP. It is expected that CoAP needs less bandwidth due to the nature
of the protocols design as well as the used transport layer protocol. CoAPs close relationship
with HTTP means we can use existing web services relatively easily.
To evaluate the implementation we set up a test environment:

• Docker container with luftdaten.info API.
• CoAP-proxy from Californium with modifications to handle 2 specific custom options.
• An esp8266 configured to use the local API.

We connect those components through a WiFi access point so that all the traffic can be
captured in the order in which it is generated. Figure 3.1 shows the components and how
they are connected.

3.1 Custom options

Since the luftdaten.info API requires HTTP POST request to have the custom header
fields X-Pin and X-Sensor, we need a CoAP to HTTP proxy application that can transform
outgoing CoAP POST requests to HTTP POST requests with the header fields added. To
achieve this we need to add the necessary information to the CoAP request and use a proxy
that is able perform the transformation. CoAP allows us to define custom options which we
can use to achieve the former. For the latter we need to modify an existing CoAP to HTTP
proxy since a generic way to map options to HTTP headers is not part of the specification.
Option numbers 6500 to 65535 are reserved for experiments. Our custom options need to
marked as Critical and Unsafe so the least two significant bits need to be set to 1. We
choose option numbers 65003 and 65007.
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CoAP POST

Wireshark

WiFi
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CoAP-HTTP
cross-protocol
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Airrohr-firmware
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Figure 3.1: Sketch of test environment. The example shows the process of pushing values from 1
sensor to the API. The components are arranged so that all traffic goes through the WiFi
access point. We can then observe the communication using Wireshark. The esp8266
sends a CoAP POST request to the cross-protocol proxy which converts it to HTTP and
forwards it to the API. The response is then translated back to a CoAP message.
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3.2 Changes to Californium

Because of CoAPs REST nature we can use a CoAP to HTTP cross-protocol proxy to
deliver CoAP POST requests to an HTTP endpoint. As a result of this, we can move the
embedded client’s HTTP functionality to the proxy.
Eclipse provides proxy classes as part of Californium along with a demo proxy application.
Conversion of CoAP options to HTTP headers happens in HttpTranslator.java line 679.
The Proxy.properties file contains mappings between CoAP and HTTP codes. We add
lines for our custom options as shown in Listing 3.1.

2 coap.message.option.65003=X-Pin
3 coap.message.option.65007=X-Sensor

Listing 3.1: Added lines in the Proxy.properties file.

Since CoAP option payloads have a data type, Californium-core needs to be aware of those.
Changes to OptionNumberRegistry.java of Californium-core are shown in Listing 3.2.

60 public static final int X_PIN = 65003;
61 public static final int X_SENSOR = 65007;

...
127 case X_PIN:
128 return optionFormats.INTEGER;

...
136 case X_SENSOR:
137 return optionFormats.STRING;

Listing 3.2: These changes make Californium-core aware of the new options and set their basic data
type.

In our specific case the sensor sends its requests faster than the proxy can processes them.
To prevent it from crashing, multiple connections will be allowed at the same time. We edit
the file ProxyHttpClientResource.java of Californium-proxy as shown in Listing 3.3.

62 private static final AbstractHttpClient HTTP_CLIENT = new DefaultHttpClient(new
PoolingClientConnectionManager());

Listing 3.3: Pass PoolingClientConnectionManager in constructor.

3.3 Memory Usage

Now that we can send updated values to the REST API using only CoAP, we can remove
the HTTP functionality. We compare 3 different versions, the unmodified Airrohr-firmware,
a version with CoAP included, and a version with CoAP but without HTTP capabilities.
The avr-size utility is used to retrieve segment sizes which are shown in Figure 3.2.
The difference in total size between the versions shows us how much memory the CoAP and
the HTTP parts need. Our CoAP implementation uses about 21 kB. The HTTP parts of
Airrohr-firmware use about 165 kB. These versions are not functionally equivalent so if we
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Figure 3.2: Size of memory segments for different Airrohr-firmware variants.

were to completely match all of the original Airrohr-firmwares functions, the CoAP section
would increase in size. However, because the difference is relatively large, we can expect it
to stay smaller than the HTTP version.
An estimation of flash memory and Random-Access Memory (RAM) requirements is derived
by summing up the segments Data and Text, as well as, Data and BSS. This is shown in
Table 3.1.

Table 3.1: Comparison of used memory. All values are in bytes.

Master CoAP No HTTP
RAM 568532 588640 424244
Flash memory 623828 644480 479508

3.4 CoAP vs. HTTP: time to send

We look at how long it takes to push values of 1 sensor to the REST API. The Airrohr-
firmware opens a single HTTP connection for each sensor, so we can get the duration of a
push process by calculating the difference between the point in time when the connection
is initiated to the one when the socket is closed. In the case of CoAP-NON requests the
duration is obtained by measuring the time elapsed from sending the POST until receiving
the NON 2.01 created response.



21

 0

 1

 2

 3

 4

 5

 6

 7

HTTP sds HTTP dht CoAP sds CoAP dht

D
u
ra

ti
o
n
 (

s)

Test cases

Figure 3.3: The time it takes to complete a POST request. NON messages are used for CoAP.

We measure these values for each sensor 30 times with a polling rate of 145 seconds. The
results are shown in Figure 3.3 as boxplots1.
The median round trip times for HTTP are slightly faster than CoAP round trip times. A
contributing factor could be that an HTTP exchanges still needs to take place as part of
the CoAP push process.
In the HTTP cases there are several outliers up to 6 seconds. This could be due to delays
happening in the esp8266 HTTP stack or due to packet loss. We have recorded the test
run and analyze the TCP connection duration as seen by Wireshark in Figure 3.4. The
longest connection spans approximately 2.6 seconds so it is more likely that the delays are
introduced by the esp8266 HTTP stack.

3.5 CoAP vs HTTP: bandwidth usage

We compare bandwidth usage for a single sensor value push operation in figure 3.5.
Since we are interested in the difference between CoAP and HTTP we look at the traffic
between the sensor and the proxy as well as between the sensor and the API.
In all cases the payload contains 1 JSON formatted string in the request and 1 in the

1The box is around the region between the first and third quartiles. Whiskers extend to the most distant
point whose y value lies within 1.5 times of the interquartile range. These parameters apply to all used
boxplots.
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response. Together they are 366 bytes. The HTTP protocol uses 381 bytes and the TCP
protocol accounts for 216 bytes.
A CoAP NON push consists of 2 messages. The POST request and the NON 2.01 created
status message. One of the reasons that CoAP is smaller, is that X-Pin and X-Sensor are
represented by their option number instead of the string.
In case of CON, the only difference is two additional ACK messages that are 8 bytes each.
By using CoAP we can save about 500 bytes per push operation.

3.6 CoAP Observe

We want to see if the CoAP observe feature could be used to improve upon the polling
operational mode. To do that, we use the openHAB based client and set it up to handle
observe relationships with the esp8266. We schedule a counter that increments every 145
seconds and calculate the difference to the number of updates we receive per CoAP observe.
Because readings most likely change by minuscule amounts every time we measure, the
observers will only be notified when this change is larger than a predefined amount. We use
the accuracy values given in the sensors specification sheets as a guideline. For the DHT11
we choose ±5%RH and ±1 °C[15]. In case of the SDS011 we pick ±15% and ±10 g/m3[15].
When the new reading exceeds one of those thresholds, we send a notification.
The client refreshes the observe-relationships every hour. It will also send GET requests
based on the Max-Age options value. Since it is 60 seconds by default, the client would
request the resource state every minute. To prevent that the server is set to respond with
the Max-Age option set to 3600 seconds.
Figure 3.6 shows the result of a 24 hour test run in which we calculated the differences
every hour.
In this test configuration we can save a considerable amount of exchanges. However, how
much CoAP better observe is depends on the selected thresholds and how frequently the
sensor values actually change. Temperature and Humidity are very stable while PM 10
tends to fluctuate. It should also be noted that CoAP observe can never perform worse than
polling, provided the Max-Age option is set to a value larger that the polling frequency.
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Figure 3.6: Shows how many exchanges were saved by using CoAP observe in comparison to polling.
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Conclusion

The Airrohr-firmware is an IoT project for measuring and publishing air quality data.
Its communication is based on HTTP which is not ideal for embedded devices. We look
at CoAP, how it could benefit us in this scenario, and how it is placed in the current
infrastructure model. To demonstrate possible benefits of CoAP, we implement a library.
We then use this library to add CoAP functions to the Airrohr-firmware.
Because the REST API still depends on HTTP, we implement a cross-protocol proxy for
the specific use case of pushing sensor values to the luftdaten.info API. Program size is one
of the major constraints for the Airrohr-firmware, so we explore how much memory could
be saved by removing and replacing HTTP with CoAP. A significant amount of memory
could be saved but not enough to reliably create a firmware version that fits on the smallest
esp8266 configuration of 512KiB, especially with future expansion and the OTA update
function in mind. The functionality of the HTTP part would move to the implementations
of client and API.
We compare how long it takes to complete one request-response exchange. In this case
CoAP is slightly slower than HTTP. This is possibly because in the process of pushing
sensor values, we still need to complete an HTTP exchange. It also takes some time to
construct a CoAP message out of the data structure.
However, HTTP has a number of high outliers possibly due to delays in the Arduino core
for esp8266 HTTP implementation.
Then we compare how much data is transferred when handling 1 sensor. In comparison to
HTTP, CoAP messages are much smaller. This is because UDP uses smaller headers and
because information is transferred in a more compressed way. For example, when using
HTTP we send the name of custom headers while in CoAP this information is encoded in
the option number. However, the Airrohr-firmware depends on the availability of a WiFi
network with internet connection so in this case saving bandwidth is of limited importance.
In a situation where we depend on a battery, or if bandwidth consumption is important, for
example if the esp8266 is connected through the GSM network, the smaller data packets
could be beneficial.
Finally, we implement and test the CoAP observe extension by comparing it with normal
polling operation. The number of transmission could be significantly reduced, especially
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in case of temperature and humidity. We used thresholds to trigger notifications and a
similar behavior can be realized with HTTP. However, CoAP would provide us with a well
specified behavior.
In practice we probably want both CoAP and HTTP functionality. HTTP is still usefull
for the initial configuration and pushing data to the public API without running the proxy.
Other optional APIs also depend on HTTP.
This work could benefit from a number of future improvements.
The library should be extended so that it is not only a proof of concept. That means
it should be able to handle all options and behave in the specified way even if it is used
improperly.
There are only very small gains of Flash memory when removing the HTTP POST function
however a version without any HTTP might be worth exploring. The Airrohr-firmware
in its default configuration has only four other purposes apart from sending to the API:
configuring the device, presenting the last read values in a HTML page, downloading new
firmware versions from the internet, and support for optional APIs
The first 2 cases can also easily be solved by using CoAP. When using CoAP, functionality
would move from the firmware to the client. Updating the firmware would require either
a HTTP client or CoAP blockwise transfer and a CoAP capable remote server to host the
firmware. Support for optional APIs that depend on HTTP could be replaced by using a
cross-protocol proxy.
While removing HTTP, it would also be useful to have a REST-API that is accessible with
CoAP.
In the context of such work other IoT technologies could be explored. For example CBOR
might allow us to save both bandwidth and memory for the configuration. It would also be
worthwhile to see how CoAP compares to other lightweight protocols like Message Queuing
Telemetry Transport (MQTT).
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