OTTO VON GUERIEKE
IS FACULTY OF
VIEXCDASCGAYNCN COMPUTER SCIENCE

e.
. _'® Communication and
e Networked Systems
3

Communication and Networked Systems

Bachelor Thesis

Extending Battery Life by Employing Fog
Computing in CoAP

Mo Shen

Supervisor: Prof. Dr. rer. nat. Mesut Giineg
Assisting Supervisor: MSc. Marian Buschsueweke

Institute for Intelligent Cooperating Systems, Otto-von-Guericke-University Magdeburg

8. February 2019

Abstract

Abstract

Mobile devices are one of the most important components in the vision of Internet of Things
(IoT). With the rapid development of wireless communication protocols, building a network
consisting of a massive number of sensors is not a great challenge any more. The Constrained
Application Protocol (CoAP) is one of the emerging protocols that focusses on the efficiency
and reliability of Machine-to-Machine (M2M) communications. The CoAP Option Observe
allows to subscribe to a resource instead of polling it constantly. Still, Observe lacks a
flexible and standardised interface to specify which data is of interest. This often results
in unnecessary high levels of network traffic and power consumption. Thus, more work
can be done to optimize existing approaches or explore new possibilities. This thesis is
motivated by the concept of fog computing and attempts to pursue a widely applicable
method in this domain. This method aims to be energy efficient in dealing with long-term
resource-monitoring tasks and focuses on extending battery life of embedded devices. As a
result, an Application Programming Interface (API) is introduced and implemented. Two
kinds of applications of this API are assumed and simulated in the experiments. With the
help of this API, CoAP devices are able to process collected data at the data source. This
reduces the necessary wireless communication and is effective to reduce power consumption.
Additionally, for those computation-intensive tasks, this API gives mobile devices the ability
to transfer part of work to remote servers via dynamic code migration. This method avoids
a shortened battery lifetime caused by the sustained high CPU load. Through analyzing
the obtained results of the two experiments, the amount of power that could be saved turns
out to be significant. The response time of computation-intensive tasks could be reduced
up to 10% through dynamic code migration.

Contents

List of Figures vii
List of Tables ix
Listings Xi
Acronyms xiii
Glossary XV
1 Introduction 1
1.1 Motivation 2
1.2 Goal e 3
1.3 Thesis Structure L 3
1.4 Related Work e 3

2 Thesis Contribution 5
2.1 Concept e e 5
2.2 TImplementation L Lo 8
2.3 Experiments. 11
2.3.1 Experiment 1: Analysis of Power Consumption 12

2.3.2 Experiment 2: Simulation of Computation-Intensive Scenario 14

3 Thesis Outcome 19
3.1 Evaluation e 19
3.1.1 Evaluation of Experiment 1 19

3.1.2 Evaluation of Experiment 2 0. 20

3.2 Conclusion e 20
Bibliography 23
Appendix 24

A.1 Example Scripts used in Simulation 25

21
2.2
2.3
24
2.5

List of Figures

Sequence-Diagram: Creating a Task resource via Task Manager 8
Sequence-Diagram: Running Tasks on remote server 9
Current-Time-Diagram of monitoring a CoAP resource 13
Sequence-Diagram: Processing data on the server 16

Boxplot: Response time of locally and remotely executed tasks 18

21
2.2
2.3

3.1

List of Tables

Example: Payload of a discovery response
Properties of four CoAP methods
Response time of locally and remotely executed tasks

ESP8266: Required current by power mode [21] . . .

2.1 Lua Task Example .

src/cal_pilua
src/benchmark_ cal_ pi.lua

Listings

Acronyms

API Application Programming Interface. iii, 3, 5, 6, 8, 10-12, 14, 15, 19-21
CoAP The Constrained Application Protocol. iii, 1-6, 8, 11, 12, 17, 19-21
HTTP Hypertext Transfer Protocol. 1

loT Internet of Things. iii, 14, 10, 20, 21

M2M Machine-to-Machine. iii, 1, 3

WSN Wireless Sensor Network. 3

Glossary

DoS attack A denial-of-service attack (DoS attack) is a cyber-attack in which the perpe-
trator seeks to make a machine or network resource unavailable to its intended users

by temporarily or indefinitely dsirupting services of a host connected to the Internet.
10

ESP8266 The ESP8266 is a low-cost Wi-Fi microchip with full TCP/IP stack and mi-
crocontroller capability produced by Shanghai-based Chinese manufacturer Espressif
Systems. 5, 11

RIOT RIOT is a small operating system for networked, memory-constrained systems with
a focus on low-power wireless Internet of Things (IoT) devices. 10

CHAPTER 1

Introduction

Internet of Things (IoT), first introduced by Ashton [1] in 1999, becomes nowadays one of
the most exciting and promising research topics. According to Gubbi et al. [2], the number
of interconnected devices on the planet has overtaken the actual number of people in 2011
and this number is expected to reach 24 billion by 2020. To achieve the complete IoT vision,
an efficient, scalable and secure network is essential.

Thanks to recent technology advancements and rapid standardization processes in the do-
main of wireless communication, it is already possible to build a reliable, energy-efficient
and low-cost sensor network. This network has the capabilities to collect, process and an-
alyze valuable information in various environments. It brings a lot more possibilities to
existing applications and changes the way we interact with mobile devices. However, which
cannot be ignored is, alongside the countless opportunities and enormous potentials, there
are also challenges and problems.

Wireless networks, on one hand, compared to wired networks, has its dominant advantage
in mobility, cost efficiency and ease of deployment. Wireless devices can be accessed from
anywhere, be deployed where a wire-network is hard to reach and work together effectively
even in a frequently changing environment. On the other hand, wireless networks have the
drawback of reduced reliability compared to wired networks, which is a result of interference,
latency and reachability.

Besides, a limited power supply is another concern. Gubbi et al. [2] state that, most devices
are based on battery supplies. As the wireless communication is the main contributor to the
total power consumption [3, 4], there is an urgent requirement to improve the efficiency of
wireless communication. With these characteristics, Hypertext Transfer Protocol (HTTP)
is inapt due to its lack of multicast support, high overhead and complexity. New wireless
communication protocols are needed to suit better into this situation. CoAP, as defined
in RFC 7252 [5], is one of them. It is a specialized web transfer protocol for use with
constrained nodes (with small amounts of ROM and RAM) and constrained networks (e.g.,
low-power, lossy) [5]. Additionally, it is designed for M2M applications such as smart
energy and building automation, as the M2M communication without human interaction
will be a great part of the wireless networking in the future. Furthermore, CoAP keeps the
possibility of being easily translated into HI'TP to simplify the integration with the web.

This encourages current developers to use this protocol and combine it with existing web
applications.

Resource monitoring and data collecting is a common application in the domain of IoT,
which requires a long-term and continuous wireless networking. To deal with this kind of
scenario, CoAP introduces the Observe extension [6] to provide a more flexible and energy-
efficient working procedure. However, Observe only provides a limited interface to filter
which information to subscribe to. Additionally, this interface is largely unspecified leading
to many incompatibilities between different implementations. Hence, a client will likely
receive more data then needed.

This thesis is intended to provide a new approach to deal with this situation by employing
fog computing paradigm in CoAP. With the new method, CoAP endpoints are able to
execute code provided by other devices and make the runtime manageable as normal CoAP
resources.

In the next section, the idea and motivation of energy-saving using this method are com-
prehensively explained and the possible application scenarios are also introduced.

1.1 Motivation

Although sensing devices in IoT are usually small and cheap, the work they do can be
complicated and varies widely from application to application. It is a tough job to design
a communication protocol that meets every requirements under all kinds of scenarios.

Monitoring a resource over a period of time is a common task in smart environment appli-
cations. Transferring every single record collected by sensors is unnecessary, since the raw
data may be noisy or it is not required by other devices immediately. The energy is wasted
due to these redundant network traffic. With the observe option, client is able to retrieve a
resource and keep the status of this resource updated by the server over a period of time [6].
Additionally, Uri-Query can be used to filter out uninteresting records or process collected
data before sending it. This is an effective way to reduce the network traffic and save some
power for other work. But it is difficult to deal with complex scenarios, as the available
options for Uri-Query are limited to what the server can provide and a combination of these
options is not flexible enough to carry out all kinds of tasks.

Another problem that could occur in a IoT application is the sustained high CPU usage. The
complexity of tasks executed on embedded devices varies from each other. A computation-
intensive task increases the drain of battery on those devices and has a negative effect on
the battery lifetime. If it is possible to actively transfer this kind tasks to remote servers,
which are resource-rich and insensitive to energy cost, this problem can be therefore avoided.
Moreover, due to the huge advantage in processing speed, the results may still arrive in time
or earlier, even with the overhead of transferring work taken into account.

This thesis aims to provide a new energy-saving method to solve the above mentioned
problems by bringing in the fog computing paradigm [7] into CoAP. The idea behind the
fog computing is to extend the computing power, storage and memory capacity closer to
data source, which allows these devices to precise filter or process data before transferring
it.

The concept of the new approach is to integrate another runtime into current CoAP im-
plementation. Other CoAP endpoints should be able to use this runtime and execute code
remotely on these devices. The code is independent to CoAP server and has the full control
of reading sensors and processing data collected. As a result, this approach reduces wireless
communications similarly as Observe extension, while filtering procedure is not limited by
the server. In the case of dealing with energy-consuming tasks, the device acts as a client
and make the use of the runtime provided by other resource-rich devices.

1.2 Goal

The goal of this thesis is to specify an API that allows CoAP endpoints to execute code
written in a certain format and return the result when the code successfully returns. At
the same time, other devices are able to inspect the status of the execution and control the
progress remotely. The code is intended to precisely process raw data at the data source,
in order to reduce necessary wireless communication.

Furthermore, this API will be used to dynamically migrate code to other devices, so that
CoAP devices can avoid doing energy-consuming tasks locally. The performance after
implementing this API will be tested in terms of response time of a certain request. The
method aims to keep the CPU load of CoAP endpoints at a low level to extend its battery
life without delay the response of the task.

1.3 Thesis Structure

The rest of the thesis is organized as follows:

In the next section, related work will be reviewed. Chapter 2 consists of three parts:
Concept, Implementation and Experiment. Chapter 2.1 shows the main idea of the API
design and possible operations of each component on the implemented endpoints. In the
Chapter 2.2, implantation details, tools and libraries used in C and Lua are presented.
Problems and challenges are also carefully discussed. Chapter 2.3 demonstrates two possible
application scenarios and evaluates the performance based on the data collected. Finally,
in Chapter 3 the outcome of the thesis is summarized.

1.4 Related Work

In the domain of IoT, Wireless Sensor Network (WSN) or Fog Computing, a considerable
amount of work has been done to improve the battery life of mobile devices. The efforts
are made in many directions.

While Gubbi et al. [2] present their vision of IoT and its architectural elements with their
future directions, Wu et al. [8] analyze the possible developing directions of M2M com-
munications and discuss importance of standardization progress. In the Fog computing
conceptual model written by Iorga et al. [7], how fog and mist computing is related to
cloud-based computing models for IoT is explained. Furthermore, they pointed out impor-
tant properties and aspects of fog computing to give a guidance for later researchers. All

these contributions together build a firm foundation for future developments and light a
clear path for later researchers.

In the exploration of employing the concept of fog computing in IoT applications, previous
researchers have proposed many innovative approaches. An architecture called “Smart
Gateway” is introduced by Aazam and Huh [9] in 2014. It is able to analyze and process data
before uploading it to cloud. This method is efficient in terms of reducing the upload and
synchronization delay and is helpful in alleviating communication overhead and lessening
the load of cloud. Shi, Chen, and Deters [10] try to uniform mobile devices as a whole device
cloud via CoAP, in order to provide distributed computation and shared resources among
these devices. So that all devices are connected to each other and are able to interact with
other members to provide a better user-experience.

In terms of reducing power consumption, there are a great number of significant contribu-
tions. In 2007 Rahmati and Zhong [11] have already made their attempts to make mobile
devices actively switch between Wi-Fi and cellular networks based on network condition
estimation. They formulated the problem as a statistical decision problem and provide
algorithms to make selections based on the field-collected data. As a result, they improved
the average battery time by 35%.

Nearly at the same time, Pering et al. [12, 13] have done a series of experiments to im-
prove the battery lifetime of mobile devices. In an earlier research, they proposed a system
called “CoolSpots”, which enables a wireless mobile device to automatically switch be-
tween multiple radio interfaces, such as Wi-Fi and Bluetooth. Later, in another work, they
considered sharing the usage of wireless channels among multiple clients in the newly in-
troduced “SwitchR” framework to further reduce the energy consumption in a multi-radio
architecture.

Likely, Shi, Bahl, and Sinclair [14] suggested an event driven energy saving strategy for
battery operated devices. The work mainly focused on reducing the power a device consumes
in idle mode with the concept called “wake-on-wireless”. This goal finally is achieved by
adding a second, low-power channel to the device. Thus, it is possible to shut down other
interfaces when the device is not being used.

In recent researches, Kientopf et al. [15] proposed a service management platform inspired
by the concept of fog computing. With the new platform, the client application is able
to send requests for a service migration. The introduced service manager will migrate the
service based on the communication cost. This method effectively reduces the transmission
latency and achieved a better scalability for IoT applications.

This work learns from the previous work and attempts to propose a solution of extending
embedded devices’ battery lifetime from the perspective of software design.

CHAPTER 2

Thesis Contribution

In this chapter, the idea of the API design and the implementation details are discussed.
Furthermore, two experiments are conducted to show the proof of the improvements.

Chapter 2.1 reviews important design decisions taken and outlines the structure of the
program. The usage of each components and their available operations are also briefly
introduced. At the end of this section, an example is given to show the possible working
procedure.

Chapter 2.2 covers the tools and libraries used to achieve the proposed objectives. Accord-
ing to the design of the API, a server should be able to support multiple runtimes at the
same time. Different runtimes are included like modules. Each modules can work sepa-
rately. However, in order to let the amount of work to fit in the scope of this thesis, the
implementation considers Lua as the only supported runtime module.

Chapter 2.3 consists of two parts. Experiment 1 compares the number of wireless trans-
missions needed for a single task before and after the API is implemented. And then the
improvements are evaluated with a computation by referencing the power consumption of
ESP8266. Experiment 2 measures the response time of a request with and without using
the dynamic code migration technique. This experiment aims to find out if it is possible to
execute tasks remotely without adding extra delays to responses.

2.1 Concept

Because of the high power consumption of the wireless communication module, reducing its
necessary network traffic is an effective way to extend the battery life of a mobile device.
An existing approach in CoAP is the Observe extension defined in RFC 7641 [6]. By using
this option in the request, this endpoint can be notified whenever the status of interested
resource changes. However, it is hard to cover all application scenarios, since the amount
of available options is limited. In some cases, a long-term observation may be required and
the data will actually be processed when all of them are arrived, which means they can
be collected and processed at data source and be transmitted back when the final result is
computed. This significantly reduces the number of messages needed to complete this kind

URI Content Format Resource Type Interface
/fog/lua/simple test/plain; charset=utf-8 task_lua fog_computing
/fog/lua/ test /plain; charset=utf-8 task_manager fog_computing

Table 2.1: Example: Payload of a discovery response

of task. The goal of this work is to provide an API that fulfills this requirement.

The main component of a CoAP server are CoAP resources. These resources can be manip-
ulated by four pre-defined methods: GET, PUT, POST and DELETE. Taking the compatibility
into consideration, this API should be designed under the scope of CoAP, i.e. without
defining new components or methods. So that the new functionality can be used by other
devices without this API immediately.

As a result, there are only two components in this API: The Task Manager and Tasks.
Both of them are actually CoAP resources. The Task Manager is static and pre-configured
on the server. It is responsible for managing Task resources and is initially discoverable.
A Task is dynamically managed by the Task Manager and other devices can communicate
with it via standard CoAP requests.

The implemented API can be detected by reading the discovery response of a device. Task
Manager has a resource type "task_manager" and interface "fog_computing". If multi-
ple Task Managers are available, the resource type should be defined more specific, e.g.
"task_manager_runtimel" and "task_manager_runtime2". Similarly, a Task has a re-
source type "task" and the same interface as the Task Manager. If multiple script formats
are supported, the resource type of each Task should be defined as "task_runtimel" and
"task_runtime2". An example payload of the discovery response is shown in Table 2.1.

Operations on Task Manager

Available operations on the Task Manager are GET and POST. GET is used to provide human-
readable information such as usage instructions or code examples. The information is
static. The method POST is used to upload runnable code. The code that to be executed
in the defined runtime should consist of two parts: a configuration and a function. The
configuration part provides the necessary information for creating and executing the Task
resource, while the function part contains the code to be executed. As shown in Table 2.2,
method PUT has a similar property as POST with the only difference in property idempotent.
Scripts can be included both in the payload of a PUT request and a POST request. However,
due to different content of payloads, the resulting status of the endpoint is not strictly the
same. This violates the property of idempotent, thus makes POST the only option.

Operations on Task

Tasks, unlike other regular CoAP resources, are created dynamically by Task Manager.
Possible operations on a Task are defined as follows:

GET PUT POST DELETE
payload no yes yes no
safe yes no no no
idempotent yes yes no yes

Table 2.2: Properties of four CoAP methods

o GET: returns the status of the corresponding task which can be one of: INIT | RUNNING
| ERROR | FINISHED

e DELETE: deletes the corresponding task

e POST: performs the command appended in the payload. Possible commands are:
— start: starts the task if the task has status INIT or FINISHED
— cancel: terminates the existing runtime if the task has status RUNNING

— result: returns results if the task has status FINISHED

The method GET is chosen to retrieve the status of the runtime instead of the results of the
code. The status of the runtime is an important information of the resource, as it limits
the allowed operations on the Task resource. Blindly sending commands to a Task may
cause an inefficient way of communicating. Moreover, the possible operations on Tasks
can be further extended. Due to the different requirements in different applications, new
commands and new statues can be easily added in a backward compatible manner to allow
more fine grained control of the runtime.

Procedure

A standard procedure of creating and deleting a Task is displayed in Figure 2.1. During the
creation of Task, the code appended in the payload is loaded in the runtime and the con-
figuration part is evaluated to extract necessary information for creating the Task resource.
If no error occurs and no duplicate Task found, the script will be saved to the local storage
and the newly created Task resource is then discoverable. Otherwise a 4.00 Bad Request
should be returned with a diagnostic payload to indicate the reason of failure.

As is displayed in Figure 2.2a, upon receiving "start" command, the function part should
be loaded and executed in a separate runtime and the status of Task changes to RUNNING.
After the function finishes its job and successfully exits, the status of Task should be changed
to FINISHED. And then, the results can be retrieved by other devices via POST requests. At
last, the Task resource can also be restarted or deleted.

If the task is configured to accept a separate response (see Figure 2.2b), the server will start
the task immediately after the resource is successfully created and send back an empty ACK
message. When the executed function returns, the server sends the result back directly in
a new message without waiting for a POST request from the client.

If any error occurs during the execution, its status should be changed to ERROR and no
request other than DELETE should be further handled. Upon receiving DELETE request, the

:Node :Server

GET /.well-known/core

2.05 Content
Payload:

/lua-task-manager
/micropython-task-manager

POST /lua-task-manager
Payload: correct lua code

2.01 Created

POST /lua-task-manager
Payload: incomplete configuration

4.00 Bad Request
Diagnostic Payload:
Failed to load configuration

Figure 2.1: Sequence-Diagram: Creating a Task resource via Task Manager

existing runtime should be stopped and all local files must also be cleared. Finally, the
corresponding Task resource is no more visible on the server.

2.2 Implementation

This section details the implementation of the API and explains the additional libraries
used to achieve the functionality of the separate response. Because the implementation of
CoAP used in this thesis is written in C, further implementations of Task Manager and
Task are also written in C. Although the runtime that can be integrated with the program
is not fixed, due to the scope of the present work, only one is chosen and implemented.
Among all available choices, Lua stands out for many reasons. Lua is designed to be a
lightweight embeddable scripting language. It has a C API, which simplifies the work of
integrating it into C program.

C APl in Lua

One great advantage of Lua is its C API [16]. It can be included as libraries and let C code
interact with Lua code in a separate environment called “state”. In the new environment,
Lua manages a stack. This stack includes nearly all elements in a Lua program, and
through this stack, values can be exchanged between C and Lua without worrying about

:Server

:Node

GET /.well-known/core

2.05 Content

Payload: list of task managers
| ST o T T e

POST /fog/lua
Payload: lua code

2.01 Created

POST /fog/lua/task
Payload: "start”

2.04 Changed

GET /fog/lua/task

2.05 Content
Payload: FINISHED

POST /fog/lua/task
Payload: "result”

2.05 Content
Payload: result of lua code

DELETE /fog/lua/task
2.02 Deleted

execution
of lua code

L-_ T result

a) Task with a non-separate response

:Server |

GET /.well-known/core

2.05 Content
Payload: list of task managers

POST /fog/lua
Payload: lua code

Empty ACK

2.05 Content
Payload: result of lua code

Empty ACK

DELETE /fog/lua/task
2.02 Deleted

:Node |

execution
of lua code

L-- T result

b) Task with a separate response

Figure 2.2: Sequence-Diagram: Running Tasks on remote server

10

type mismatch or potential memory leak. Moreover, Lua code can be executed in protected
mode and all API functions are either safe or able to throw exceptions. These exceptions
can be then handled in the C program. Hence, denial-of-service attacks (DoS attacks) on
the server using the fog computing API are effectively prevented: The remotely executed
Lua code will not be able to crash the C program in absence of bugs.

Pthread

Apart from building a new runtime in the C program, parallelism is another key in this API.
It is common that a server must manage multiple Lua state at the same time, as in one Lua
state only fits in one task. It would be a much less practical application, if a server can only
do one job at a time. Meanwhile, the server must be able to handle other requests during
the execution of these tasks. Threads and processes are both possible in this situation.
However, threads have several advantages in this application compared to processes. The
most important is the less overhead [17]. Creating new thread or terminating an existing
thread consumes less time than doing so with a process. Switching between threads is also
much faster than switching between processes. In this implementation, pthread.h [18] is
used for multi-threading support. Pthread stands for POSIX Threads. <pthread.h> is
an implementation adhered to the IEEE POSIX 1003.1c standard (1995). For the devices
running a [oT operating system like RIOT, multiple threads are also supported by thread
stacks and properly assigned priorities.

As a result, each Lua state will run in its own thread. In this thread, C code will load the
Lua script, call the run() function in that script and wait until it returns. At the same
time, the server holds the ID of the created thread, so that the whole execution can also be
controlled from the outside.

Separate Response

As displayed in Figure 2.2, separate responses is a very practical functionality. It let the
client get the result as soon as the task finishes, without sending extra query requests. Sepa-
rate response is an already defined behavior in RFC7252 [5]. A server sends immediately an
acknowledgment when receiving the request, and sends results back later in a new message.

There is already a event loop running on the server to watch over all incoming requests.
Therefore, the server can be notified if there is a new I/O event. Pipe [19] is a common
one-way communication method in UNIX operating system. The program can write on the
one side and read on the other side. If the program finishes writing and close the write side
of the pipe, an new I/O event will be raised. Thus it is used in this implementation as a
notification system. pipe() is initialized when a task starts and the read side of the pipe is
added to the event watch list, while the task thread holds the write side of the pipe. When
the task finishes, the task thread writes to the pipe and exits, so that event loop will catch
the read-ready signal and trigger the callback function to send the separate response.

11

1 conf = {

2 taskname = "a simple task”,

3 separate = 1, autostart = 1

4 %

5 1local script = {}

6 function script.run():

7 return "a simple task done"” end
8 return script

9 }

Listing 2.1: Lua Task Example

Example of a Lua task

In this section, a simple valid Lua script is displayed in Listing 2.1 to give a better under-
standing of this API. In global variable conf stores:

e taskname: to identify the resource under discovery
e separate: to check if the CoAP separate response should be used

e autostart: to check if the task should instantly start after the resource is successfully
created.

The return value of the whole script must be a table including a run() function. Function
run () should require no argument and its return value must be a string type. The returned
string will be sent back as result in payload.

2.3 Experiments

This chapter describes two experiments conducted in this thesis. The goal of the experi-
ments is to evaluate the potential improvements that this API can provide in the given two
applications.

The first experiment aims to figure out how the wireless communication effects the total
power consumption of a mobile device in a resource-monitoring task. The energy cost is
computed based on the active time of each working mode of the device ESP8266, as well as
its operating current. After a series of computation, three factors turn out to be significant:
the number of messages, the length of each message and the operating current of the Wi-Fi
module in TX mode.

In the second experiment, a simulation is performed to review the performance improve-
ments by using the fog computing API to migrate code from the node to the cloud. The idea
is to offload computation-intensive tasks from low power devices on to capable hardware.

12

2.3.1 Experiment 1: Analysis of Power Consumption

This Experiment assumes a common working environment of two CoAP devices. A client
sends requests to a server periodically to collect sensor measurements. In this normal
approach the server needs to send a response back for each measurement. However, not
all data are valuable in the most of cases and it won’t make any difference if the response
comes immediately or not, since the collected information is often analyzed together.

With the API introduced in this thesis the client sends a piece of code to the server instead
of a query request. The code is executed in the runtime provided by the server and returns
the final result when it finishes. Hence, the server only needs to send one response back to
deliver the final result.

The goal of this experiment is to analysis the power consumption of these two approaches.

Computation

In order to show the difference of power consumption in above mentioned two approaches
more precisely, a computation is performed in this section.

Given a fixed period of time, the significant power consumption in this scenario consists of
two parts: CPU work and wireless communication module, where the wireless communi-
cation can be further divided into two different types: working in Receive mode (RX) and
working in Transmit mode (TX). The total power consumption of a device can be expressed
as follows:

Q =Tepy Lepy + Trx - Lopuirx + Trx - LopusTx (2.1)

where
e () is the total battery charge used
e T is the time elapsed in the corresponding power mode
e I is the working current of the corresponding power mode

The working mode of the device and the changes of its operating current during the task is
shown in Figure 2.3. In the case a, the device switches to active mode frequently to send
and receive data. In the case b, the device is able to work mostly in modem-sleep mode.
In order to keep the availability, the device still needs to periodically switch to active mode
to receive data. The additional charge used in the case b is the extra load on CPU due to
the running code.

According to the equation 2.1, the charge required for both cases are displayed below:

Qs =Tcpu, " Lopu + Trx, - Iopusrx + Trx, - Lepusrx (2.9)

Qv =Tcpu, - Lopu + Trx, - Lopusrx + Trx, - Lopusrx + Trask * Lrask

Besides, the total time elapsed during this task is the sum of the time spent in all these
three modes. The working current for RX/TX mode equals the current needed for the
Wi-Fi module plus the necessary current for the CPU. Also, the time spent in RX mode

13

CPU+TX | — — - — — — — - — —
-
f=4
£
3 CPU+RX A
CPU A -
Time
a) Task with a non-separate response
CPU+TX — —
=<
[
E
3
o H H H H H H H H
CPU A -

Time

b) Task with a separate response

Figure 2.3: Current-Time-Diagram of monitoring a CoAP resource

for both cases are the same. As a result, there are the following relations between these
variables.

Tiotal = Topu + Trx + Trx
Iepusrx = Iopu + Irx
Iepusrx = Lopu + Irx

TRXa = TTXb

AQ =Q, —Qy, = Tepu, — Tepu,) Lepu
+ (Trx, — Trx,) * Lepusrx T (Trx, — Trx,) - Lopusrx — Trask * I1ask

:QTask

As T and I, are independent to the rest parts of the equation, the product can be
simplified to Q.4 to indicate the additional power consumed by the running of the code.

By combining the equation 2.2 with the equation 2.3, the difference of charge turns out to
be:

AQ = (Tiota — TRXa - TTXa) — (Thotal — TRXb - TTXb>) lepy

+ (Trx, —Trx,) - Lepusrx — @rask

14

AQ = (Trx, — Trx,) “ Lepu + (Trx, — Trx,) - Lopusrx — @rask
= (TTXa - TTXb)) (ICPU+TX - ICPU) — Qrask (2-4>

= (TTX.A - TTXb> Ty — Qrask

As Trx can be expressed as the product of the number of packets Ny, and the time needed
to transfer a single packet T,,;. So in case b, there are

Trx = Npxi - T (2.5)
In the case a, the number of packets can be defined as N and the time needed for a
normal response is T} ;. In the second case, the required packets are constantly 2 and the
transmission time of the result can be represented as T}, . As a result, the final expression
of the charge difference is:

AQ = (N ' Tnpkt —2- Trpkt) : ITX - QTask (26)

Results

With equation 2.6 the charge difference for a certain task can be analyzed. The final
influencing factors are:

e N: the number of messages needed to complete the task

o Tkt the transmission time for a normal packet

o Tk the transmission time for a result packet

o Ipx: the operating current of the wireless module in TX mode
o Q. the additional charge required to run the code

The detailed evaluation will be performed in Chapter 3.1.

2.3.2 Experiment 2: Simulation of Computation-Intensive Scenario

This experiment is conducted to analyze the performance of this API in computation-
intensive scenarios. One of the goals of this API is to allow mobile devices avoid doing
energy-consuming tasks and make the use of the runtime provided by other resource-rich
devices.

One important criterion of the performance is the response time. The expectation of this
experiment is to determine the overhead of the code migrating process and compare it with
the accelerated data-processing phase. As a result, this could be used as a reference in
practical applications to decide if it is appropriate to execute a certain task remotely.

15

Environment Setup

It is assumed that there are two devices. One acts as a resource-constrained device with
limited battery power. The other is a resource-rich cloud-based server. In this scenario, the
pending task is expected to consume a large amount of power. Furthermore, the response
time of this task is critical. The delay of the response is used a measurement of performance.

As Figure 2.4 illustrates, the communications between the client and the mobile device are
the same. The difference appears during the data-processing phase. It is expected that the
method with the API should not consume more time than the normal one. To find the
turning point, a task with a variable complexity is required.

In this simulation, Lua function cal_pi(n) is used (see Appendix A.1). This function
computes digits of pi with a for-loop for a given number of iterations. The higher iteration
number is given, the more valid digits it produces. Although the output is irrelevant in
this experiment, the variable execution time could be used to represent different levels of
complexity. The number of iterations is set to 30, 100, 300, and 900.

Hardware

Two devices are used in the experiment.

A laptop is selected to act as the cloud-based server and a Raspberry Pi is selected to act
the mobile device deployed near sensors. Technical specifications of the two devices are
displayed as follows:

The laptop is a ThinkPad X1 Carbon (6th Gen) with:
e OS: Arch Linux x86 64
o Processor Type: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
« RAM: 8GB LPDDR3
e WLAN: Intel Dual Band Wireless-AC 8265, WiFi 2x2 802.11ac
The Raspberry Pi is a Raspberry Pi 3 Model B+ with:
e OS: Debian Linux armv7l
o Processor Type: Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
« RAM: 1GB LPDDR2
o WLAN: 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN

Execution

In the first run, the goal is to measure the required time of the critical part in Figure 2.4a.
A Lua script (see Appendix A.1) is used to load and execute the cal_pi(n) function. The
time elapsed during the execution of the function is measured in nanosecond with the help
of the Lua module chronos[20]. The script is executed on the Raspberry Pi 100 times for
each level of complexity.

16

:Endpoint

POST
Payload: data to process

:Server

2.05 CONTENT
Payload: result

C

=1

itical part of the task)

process data locally

- - result

a) Processing data locally

:Endpoint

:Server

POST
Payload: data to process

:Cloud

itical part of the task)

2.05 CONTENT

POST
Payload: data to process

2.05 CONTENT
Payload: result

process data locally

<

k- _ 2 result

Payload: result

b) Processing data remotely

Figure 2.4: Sequence-Diagram: Processing data on the server

17

Response Time [s]

Number of Loops Location Ave Min Max
30 local 0.013 0.011 0.023
remote 0.022 0.014 0.077

100 local 0.073 0.066 0.141
remote 0.036 0.023 0.100

300 local 0.571 0.547 0.614
remote 0.096 0.083 0.161

900 local 5.054 4.485 5.313
remote 0.571 0.516 0.614

Table 2.3: Response time of locally and remotely executed tasks

In the second run, to measure is the time needed for the critical part displayed in Figure 2.4b.
A CoAP server is deployed on the laptop and the CoAP client on the Raspberry Pi sends
a task-creating request to the server with the cal_pi(n) as the run() function. Also,
the separate option in the configuration of the Task is enabled. The time required in
this method is measured from the creating of the Task resource until the arrival of the
separate response from the server. The program used to measure the time for this process
is coap_bench. It is included in the CoAP implementation used in this thesis and also
measures the time in nanosecond. After receiving the result, the client sends a DELETE
request to delete the Task resource. Same as in the first run, these two steps are repeatedly
performed 100 times for each level of complexity.

Results

Figure 2.5 shows a boxplot of response time for all tasks in four levels of complexity. Ta-
ble 2.3 represents the average response time along with the maximum and minimum among
all executions. The unit of all measurements is converted to second for a better readability.
The tasks with same number of iterations are grouped in the same figure for the compari-
son. Abnormal measurements are marked out as outliers and will be ruled out in the final
evaluation.

Response Time [s]

30 loops 100 loops 300 loops 900 loops

0.08 -
X X X
0.14 A %
0.6
5 4
0.07 A
0.12 A
x 0.5 1
X
0.06 X
X 41
X
X
0.10 A %
X
X
0.05 A X 0.4
x — — —
X L n a
Q [} Q
x £ £ £ 5]
[F [
g 0.08 - X g g
g b} X 3 I
v X 0 w
9] X 0] 9]
0.04 - = « =
% 0.3
X
X
;s X
0.06 - 54
0.03 A X
X
X
0.2 4
0.04 4 X
0.02 A x
X
1
X
X
0.1
2 %
0.01 A 0.02 -
ocal emote local emote local remote tocal emote

Figure 2.5: Boxplot: Response time of locally and remotely executed tasks

CHAPTER 3

Thesis Outcome

The main goals of the proposed API for code migrations are the reduction of power con-
sumption and latency of low power servers. In this chapter the results of the experiments
in Section 2.3 are evaluated in regard to these goals. Finally, a conclusion is drawn on how
the concept of fog computing could be integrated into current CoAP applications. It states
the improvements this API could provide, as well as the shortcomings it has. The last part
of this thesis gives suggestions for future work.

3.1 Evaluation

3.1.1 Evaluation of Experiment 1

As shown in equation 2.6, there are several factors that determine the charge difference for
a certain task: N, Tnpkt, Trpkt, It Qrask-

First of all, if omitting the different length of the packets, the number of packets N needs
to be greater than 2 in order to result in a positive AQ. It means that this API is more
applicable in long-term tasks with frequent wireless communications.

Secondly, taking the length of the packets into account, this API could have its advantages
with a small number N: If the code is able to reduce the length of the payload, so that

Lokt > Tipke- AQ could turn out to be a considerable amount of charge.

Furthermore, using different standards for the wireless transmission will also have an influ-
ence on T, and Ipyx. Transmissions using older versions of the IEEE 802.11 standard take
longer, resulting in an increased 7},,. Additionally the operating current for older versions
of IEEE 802.11 is typically higher (see Table 3.1). As the new method limits the required
packets to 2, it is more likely to achieve a longer battery life in such situations.

The last part of the equation QQp,q has a negative effect on the amount of power that
could be be saved. This factor indicates that the uploaded code should avoid doing a
computation-intensive task.

20

Power Mode Description Power Consumption
active Wi-Fi TX 802.11b/g/n 170/140/120 mA
active Wi-Fi RX 802.11b/g/n 50/ 56/ 56 mA
moderm-sleep CPU is working 15 mA

Table 3.1: ESP8266: Required current by power mode [21]

3.1.2 Evaluation of Experiment 2

As illustrated in the Figure 2.5, the new approach outperforms the normal one in most of
the cases. Processing data locally only has advantages if the process time is less than 0.05
seconds. Given a good network environment, the overhead of the code migrating is small,
while the difference of computing power between cloud-based servers and portable devices
is significant. In the case with 100 loops, the average response time for the locally executed
tasks is already double of the remotely executed ones. This factor rises to 10, when the
number of loops goes to 900.

Besides the reduced response time, the IoT node can enter low power mode after the
successful creation of the task. If there are other incoming requests, the device is able
to handle them immediately instead of being occupied by previous tasks.

It is noticeable that there are more outliers in the first two locally executed tasks, compared
to the latter two with 300 and 900 loops. It can be caused due to the too short execution
time of the first two tasks. If the scheduler preempts the process to allow the execution of
other tasks, the cost of switching between processes may play a significant role here. The
impact becomes smaller, as the time needed for the task grows.

In the case of remotely executed tasks, the number of outliers remains at a constant level
for the first three kinds of tasks, while then number approaches zero in the last case. This
phenomenon is likely to be caused by the congested Wi-Fi channel. The attempts of sending
data and switching between channels add additional delay to the response.

3.2 Conclusion

This project is motivated by the consistent demand on longer battery life for mobile de-
vices. In CoAP applications, the Observe extension has provided a data-filtering method
to reduce the necessary wireless communication between mobile devices. However, there
is still room for improvement in regard to energy-saving. Especially when dealing with
resource-monitoring or computation-intensive tasks, CoAP devices are imperfect due to a
lack of available methods.

The goal of this thesis is to provide a new approach for CoAP devices to improve the
energy-efficiency when handling above mentioned tasks. An API is proposed to solve this
problem. It enables CoAP servers to process scripts uploaded by other devices. These
scripts are executed in a separate thread and has full control over how the raw data is
processed. Compared to the Observe option, this method is more flexible in the capability
of data-filtering. Moreover, it is able to support different runtimes according to the hardware

21

selected in CoAP applications. Finally, by making the use of separate responses, the client
can get the result as soon as the script finishes.

The performance of the API is evaluated via two experiments.

In the first experiment, a computation is performed to show the difference of charge cost
between the approaches with and without the introduced API. After analyzing the final
expression, it turns out that the API has its advantages if the task requires frequent wireless
communications. Additionally, reduced power consumption can also be achieved if the
payload of the response can be compressed by the code uploaded. During the application of
this API, extra attention should be paid to avoid executing computation-intensive tasks. As
the required power of running the migrated code could be higher than the power required
for transmission.

In the second experiment, the focus is on running computation-intensive tasks with mobile
CoAP devices. Considering the lack of computing power on these devices, it would be
unwise to executed this kind of tasks locally. In order to measure the overhead of code
migration using this API, a laptop and a Raspberry Pi are used to run a set of simulations.
During the simulations, the response time of the requests are measured as the reference of
performance. By comparing the response time, it can be confirmed that the overhead of
code transmission is smaller than the power required to completely process the data in most
of cases. Besides, mobile devices can enter low power mode, if there are no other incoming
requests to handle.

In conclusion, this API has its advantages in certain kinds of tasks: resource-monitoring
and computation-intensive tasks. With the help of the first experiment, it is recognized
that the number of wireless communications is a significant influence factor to the power
consumption. Processing data at the data source is a feasible approach in terms of energy-
saving, even if it comes at the cost of increased CPU time. It can also been concluded that
computation-intensive tasks are better handled remotely with cloud-based servers, as the
difference of computing power between IoT nodes and servers is significant. The response
is more likely to come earlier, although the offloading approach requires additional work
due to the code transmission phase.

In regard to the uncovered area of this thesis, problems are mainly caused by the lack of
practical experiments. In this thesis, the experiments did not take network conditions into
account. In practical applications, CoAP devices usually work in constrained environments
with an unstable network connection. Different network conditions will result in different
overhead of the code migration processes. This API could work in a more efficient way
if it is optimized based on the data collected from real-world applications. Finally, the
compatibility of this API with other existing approaches is not validated. Considering the
versatility and complexity of smart environments in the domain of IoT, combing multiple
approaches would be an effective way to achieve a better result.

Future Work

Due to the scope of this thesis, the proposed API is only tested on very limited hardware.
Additionally, the implementation supports only one runtime. Adding more runtimes to
various platforms is necessary to find out the most efficient one. Furthermore, different

22

standards of wireless communication may also be an influence factor. More experiments
should be conducted to provide more precise optimizations. In order to combining existing
methods together, the categorization of tasks is an indispensable step. Effectively recognize
the type of the task and choose the right method to handle it is the key to maximize the
battery life of mobile devices.

[12]

Bibliography

Kevin Ashton. That ’internet of things’ thing. https://www.rfidjournal.com/
articles/view?4986, 2009. Accessed: 2019-01-03.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
Internet of things (iot): A vision, architectural elements, and future directions. Future
generation computer systems, 29(7):1645-1660, 2013.

T. Pering, V. Raghunathan, and R. Want. Exploiting radio hierarchies for power-
efficient wireless device discovery and connection setup. In 18th International Con-
ference on VLSI Design held jointly with 4th International Conference on Embedded
Systems Design. IEEE Computer Soc.

Yuvraj Agarwal, Curt Schurgers, and Rajesh Gupta. Dynamic power management
using on demand paging for networked embedded systems. In Proceedings of the 2005
Asia and South Pacific Design Automation Conference, ASP-DAC ’05, pages 755-759,
New York, NY, USA, 2005. ACM.

C Bormann, K Hartke, and Z Shelby. The constrained application protocol (coap).
RFC 7252, 2015.

K Hartke. Rfc 7641: Observing resources in the constrained application protocol, 2015.

Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Ned Goren, and
Charif Mahmoudi. Fog computing conceptual model. Technical report, mar 2018.

Geng Wu, Shilpa Talwar, Kerstin Johnsson, Nageen Himayat, and Kevin D Johnson.
M2m: From mobile to embedded internet. IEEE Communications Magazine, 49(4),
2011.

Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway based
communication for cloud of things. In Future Internet of Things and Cloud (FiCloud),
2014 International Conference on, pages 464—470. IEEE, 2014.

Heng Shi, Nan Chen, and Ralph Deters. Combining mobile and fog computing: Using
CoAP to link mobile device clouds with fog computing. In 2015 IEEFE International
Conference on Data Science and Data Intensive Systems. IEEE, dec 2015.

Ahmad Rahmati and Lin Zhong. Context-for-wireless: Context-sensitive energy-
efficient wireless data transfer. In Proceedings of the 5th International Conference
on Mobile Systems, Applications and Services, MobiSys '07, pages 165-178, New York,
NY, USA, 2007. ACM.

Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and Roy Want. Coolspots: reducing

https://www.rfidjournal.com/articles/view?4986
https://www.rfidjournal.com/articles/view?4986

24

Appendix

[14]

[15]

the power consumption of wireless mobile devices with multiple radio interfaces. In
Proceedings of the 4th international conference on Mobile systems, applications and
services, pages 220-232. ACM, 2006.

Yuvraj Agarwal, Trevor Pering, Roy Want, and Rajesh Gupta. Switchr: Reducing
system power consumption in a multi-client, multi-radio environment. In Wearable
Computers, 2008. ISWC 2008. 12th IEEE International Symposium on, pages 99-102.
IEEE, 2008.

Eugene Shih, Paramvir Bahl, and Michael J. Sinclair. Wake on wireless: An event
driven energy saving strategy for battery operated devices. In Proceedings of the 8th
Annual International Conference on Mobile Computing and Networking, MobiCom 02,
pages 160-171, New York, NY, USA, 2002. ACM.

Kai Kientopf, Saleem Raza, Simon Lansing, and Mesut Giines. Service management
platform to support service migrations for iot smart city applications. In Personal,
Indoor, and Mobile Radio Communications (PIMRC), 2017 IEEE 28th Annual Inter-
national Symposium on, pages 1-5. IEEE, 2017.

Roberto Ierusalimschy. Programming in lua. https://www.lua.org/pil/24.html,
2009. Accessed: 2019-01-21.

Daniel Robbins. Posix threads explained. https://www.ibm.com/developerworks/
library/l-posixl/index.html, 2000. Accessed: 2019-01-23.

IEEE and The Open Group. <pthread.h>. http://pubs.opengroup.org/
onlinepubs/9699919799/basedefs/pthread.h.html, 2018. Accessed: 2019-01-15.

Michael Kerrisk. Pipe(2). http://man7.org/linux/man-pages/man2/pipe.2.html,
2018. Accessed: 2019-01-21.

ldrumm. chronos. https://github.com/ldrumm/chronos, 2018. Accessed: 2019-01-
21.

Espressif Systems. FEsp8266ex datasheet. https://www.espressif.com/sites/
default/files/documentation/esp32_datasheet_en.pdf, 2018. Accessed: 2019-
03-16.

https://www.lua.org/pil/24.html
https://www.ibm.com/developerworks/library/l-posix1/index.html
https://www.ibm.com/developerworks/library/l-posix1/index.html
http://pubs.opengroup.org/onlinepu bs/9699919799/basedefs/pthread.h.html
http://pubs.opengroup.org/onlinepu bs/9699919799/basedefs/pthread.h.html
http://man7.org/linux/man-pages/man2/pipe.2.html
https://github.com/ldrumm/chronos
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

Al

Example Scripts used in Simulation

Appendix

* i
* i

conf = {taskname = "pi", separate=1}
return {
run = function()
a = {}
n = 300
len = math.modf(10 * n / 3)
for j = 1, len do
aljl = 2
end
nines = 0
predigit = 0
for j = 1, n do
q=20
for i = len, 1, -1 do
x = 10 * a[i]l + q * i
a[i] = math.fmod(x, 2
q = math.modf(x / (2
end

end

}

al[1] = math.fmod(q

-- io.write(predigit + 1)

3

10)

nines do

for k = 1, nines do
-- dio.write(9)

q = math.modf(q / 10)
if q == 9 then
nines = nines + 1
else
if q == 10 then
for k = 1,
-- io.write(0)
end
predigit = 0
nines = 0
else
-- io.write(predigit)
predigit = q
if nines ~= 0 then
end
nines = 0
end
end
end

end

-- print(predigit)

return

"Task: pi domne!"

1
1

)
)

)

26

Appendix

— =

= O OO0 Utk Wik~

chronos = require("chronos")
print ("# Benchmark_cal_pi")
print ("#4d, time [ns]")
for i = 0,99 do
start = chronos.nanotime ()
os.execute("lua -e \"dofile('cal_pi.lua'):run(O)\"")
stop = chronos.nanotime ()
time = ("/s"):format((stop - start)*1e9)
s, e = string.find(time, '.’', 1, true)
print(i .. ', ' .. string.sub(time, 1, s-1))
end

I herewith assure that I wrote the present thesis titled Fxtending Battery Life by Employing
Fog Computing in CoAP independently, that the thesis has not been partially or fully
submitted as graded academic work and that I have used no other means than the ones
indicated. I have indicated all parts of the work in which sources are used according to
their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a pen alty by the law enforcement agency.

Magdeburg, March 18, 2019
(Mo Shen)

	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	Introduction
	Motivation
	Goal
	Thesis Structure
	Related Work

	Thesis Contribution
	Concept
	Implementation
	Experiments
	Experiment 1: Analysis of Power Consumption
	Experiment 2: Simulation of Computation-Intensive Scenario

	Thesis Outcome
	Evaluation
	Evaluation of Experiment 1
	Evaluation of Experiment 2

	Conclusion

	Bibliography
	Appendix
	Example Scripts used in Simulation

