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Abstract

Abstract

Internet of Things (IoT) solutions are being applied in many fields such as smart home,
healthcare and manufacturing. These networks often handle sensitive data which require
a strong level of security. However, the commissioning of new devices could often already
be easily exploited by an adversary. A successful attack would not only affect a single
device but a whole network. Besides that, the commissioning requires a solution which is
not only secure, but also complies with the limitations of IoT devices. Since the devices
often lack interfaces like a display, the network credentials need to be transmitted over a
wireless interface. A desirable solution is one which allows to use existing hardware to make
it applicable on a wide range of devices.
This thesis introduces a new commissioning protocol, which aims at being lightweight,
secure and without a need for additional hardware. The majority of IoT devices is supplied
with a Light Emitting Diode (LED), which can serve for creating an auxiliary channel
to communicate unsecured data. The developed protocol utilizes the LED to transmit a
self-generated key. This key is captured by the user’s smartphone camera and used for
encrypting the network credentials. In that way, the information can be shared with the
target device without making them accessible to an adversary.
Experiments on a prototype show that the commissioning protocol has a low memory foot-
print and can therefore be used in highly constrained environments. Apart from that, it
is evaluated that the transfer of the encryption key via light satisfies the demand of a fast
setup. Furthermore it is analysed how an attacker may try to get hold of the network cre-
dentials or prevent the commissioning. The evaluation shows that the protocol succeeds in
providing a secure communication between the two previously unknown parties by making
use of existing hardware.
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CHAPTER 1

Introduction

The Internet of Things (IoT) is a network of physical objects which sense, collect and
process data of the environment and are able to interact with it [1]. The IoT has enabled
new technologies in the last years in fields like smart home, healthcare or manufacturing.
It is expected that the number of connected devices could rise to 75.44 billion by 2025,
which would be five times higher than ten years before [2]. The use of a network made
up of smart objects for example allow a user to remotely control the temperature, light or
washing machine in the form of smart homes.
IoT devices are often characterized by high memory restrictions, low computational and low
battery power. These are limitations which are normally not faced in traditional computing.
For this reason new standards need to be developed to make a similar behaviour to the
traditional internet possible. One aspect that is often neglected in the development of new
applications is security, although sensitive data is permanently collected. Attacks like Mirai
in 2016 [3] have shown that flaws in IoT security can be exploited to cause a Distributed
Denial of Service (DDoS) attack on a large scale. In that case, 400 000 IoT devices were
infected to form a huge botnet. An attacker could also use security flaws for gaining physical
access to a house or influence devices to cause a flooding or fire.
This thesis aims at providing a new commissioning protocol for IoT devices to enhance
the security already in the initialization process of a new device. It furthermore shows the
feasibility of the specification with an implementation of a prototype on a bluepill board [4].

1.1 Motivation

Device commissioning is the process of transferring data to an entity so that it can partici-
pate in a secure network [5]. A user who is setting up a smart home network may wish to
integrate temperature sensors in a network to make a remote control and energy efficient
heating possible. Since the sensors will not be equipped with an interface like a display,
the question arises of how to share the network credentials without making them accessible
to an adversary as well. If intruders are able to get hold of the network credentials, they
would not only be able to influence the heating but also control other devices or access
private data. Sending this data unencrypted to the target device via a wireless interface
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is not desirable, because this channel could easily be eavesdropped. The solution might be
a pre-shared key, but this could be exploited or influenced by an adversary already during
the manufacturing process or during delivery to the customer.
A solution for this issue should have a focus on high security and be able to be used
with a wide range of devices. IoT devices are in most cases equipped with a simple Light
Emitting Diode (LED). As shown by Duque et al. [6], even low power LEDs can be used
for communication over light. Since this signal has only a small range it is possible to share
sensitive, unsecured data with another device over this channel.
Additionally, constrained devices are often characterized by low processing power, high
memory restrictions and a need for applications with low power consumption [7]. For these
reasons, a new commissioning protocol should consider the resource restrictions of the target
devices.
Nevertheless, the user experience should also not be neglected. It can be assumed that
the user who wants to commission temperature sensors in a network may wish to integrate
further devices. For that, it is preferred to use the same bootstrapping method for all
devices. Furthermore, a user is interested in a fast and convenient commissioning.
With consideration of the above mentioned restrictions, a new commissioning protocol is
introduced in this thesis. It requires the user to guide the bootstrapping of a new device by
receiving keying material on a smartphone via Light Fidelity (LiFi) communication. This
keying material forms a trust anchor for secure communication with the target device.

1.2 Thesis Structure

This thesis is structured as follows: In the next section, the theoretical background of the
protocol is outlined. The following chapter presents related work on other commissioning
strategies in the IoT. In Chapter 3 the protocol is described in its details. Furthermore, the
implemented prototype is presented. Thereafter a performance and a security analysis are
conducted in Chapter 4 to prove the feasibility of the protocol. The last chapter provides
a summary of this thesis and investigates future work.

1.3 Theoretical Background

In this section, the theoretical background of the commissioning protocol with a focus on the
main security measures is depicted. At first, the security goals of the protocol are defined.
Besides that, the technology LiFi is studied for its usage as an Out-of-Band channel. On
that follows a description of the encryption standard Counter with CBC-MAC (CCM).
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1.3.1 Security Goals

To provide a high level of security, commonly different aspects have to be considered.
Especially the security goals of integrity, confidentiality, availability and authentication are
important to allow a secure commissioning process. They are defined as the following [8]:

• Confidentiality: Only trusted entities can access messages sent via a network.
• Integrity: The content of a message cannot be changed without notice.
• Authentication: Messages can only be send by trusted entities, which means that

the sender can be identified.
• Availability: Entities in the network are always able to access data and functionalities

of the network.

1.3.2 LiFi as an Out of Band Channel

Roman et al. [9] describes that an Out-of-Band channel is often characterized by limited
capabilities such as a small signal range compared to the main channel. Furthermore it
often requires human interaction as well. These properties make a secure communication
of unencrypted data possible, since the risk of eavesdropping or manipulation is low. Out-
of-Band channels can for instance operate over light, over sound or visually.
One possible choice is LiFi, which was introduced by Prof. Harald Haas in a Global Ted
Talk in 2011 [10]. The transmitter flickers an optical light source such as an LED to transfer
data, which can be received with a photo detector [11].
As pointed out by Roman et al. [9] the limited range of a LiFi signal makes it a feasible
choice for Out-of-Band communication. The range of the signal is restricted by walls, for
that reason an adversary would need to be physically close. If human interaction is part
of the communication as well, the security can be improved even further since the user
can choose an adequate environment and the time of activation. If a distracting signal is
present it would probably not go without notice. These properties make LiFi suitable for
exchanging sensitive data between previously unknown parties.

1.3.3 Counter with CBC-MAC (CCM)

The following descriptions are done according to the recommendation on CCM by the
National Institute of Standards and Technology (NIST) [12]. CCM is an block cipher mode
which combines Cipher Block Chaining Message Authentication Code (CBC-MAC) with
the Counter mode of encryption. It allows authenticated encryption, therefore it provides
authentication and integrity by adding a Message Authentication Code (MAC) value and
confidentiality by encrypting the message. The algorithm allows to include additional data
in the MAC computation which is not being encrypted. It uses symmetric block encryption
such as Advanced Encryption Standard (AES).
The computation consists of the processes generation-encryption and decryption-verification.
In generation-encryption the MAC value is calculated first by using the CBC-MAC algo-
rithm. The result is encrypted in the next step, together with the plaintext message. In
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decryption-verification the communication partner calculates the ciphertext and the accord-
ing MAC value. The result of the MAC calculation is compared to the received value.
Currently only block sizes of 128 bit are supported in CCM. The algorithm requires a
payload P , a cryptographic key K and a nonce N as input. It is important to use a nonce
only once in conjunction with a given key. Reusing a nonce would allow an adversary to
gain knowledge of the plaintext messages and therefore break its confidentiality. Besides
that, other parameters need to be set. These are the bit length of the authentication field
Tlen, or t as the same value in octets. Furthermore q as the maximum size of the payload’s
binary length is required. The value for t can be any even value between 4 and 16 octets.
A long MAC length will allow higher security, but on the other hand also lead to longer
messages. The value of q can be in the range from 2 to 8 octets. The length of the nonce
N is calculated as 15− q. Besides that, the length of the message in bit is stored as Plen.
The calculations use the XOR operation, in the following represented as ⊕. The function
MSBs(X) returns the s most significant, or leftmost, bits of X. The || operator is used for
concatenation. The workflow of generation-encryption is presented in the following.
At first, the authentication field is calculated. This is done by applying CBC-MAC, which
uses the key stream blocks B0, . . . , Br as input. These building blocks are made up of 16
octets. The first block consists of flags, the nonce N and the octet length of the payload P .
In case additional data shall be included, the length of it is encoded in a predefined manner
and concatenated with the corresponding data. The last block is zero padded if it does not
consume the full size. The initialization vector is set to 0. Following on that is the message
data, which has to be zero padded as well in case the last block is not entirely filled. The
MAC value is calculated using the encryption key K and the key stream blocks B0, . . . , Br.
It results in the output T of length Tlen:

X1 := E (K, B0)
Xi+1 := E (K, Xi ⊕Bi) , for i = 1, . . . , r

T := MSBTlen(Xr)

The algorithm starts by encrypting the first block B0 with the given key. Next, the result
is XOR-ed with the following block B1 and encrypted. This is continued for all blocks,
with the last output representing the MAC value. The first Tlen bits of the result will be
concatenated to the plaintext for encryption.
In the encryption phase the same key K as for the MAC calculation is used. For that
reason it has to be made sure that the building blocks differ from the initialization vector
B0 in the CBC-MAC calculation. The ciphertext is the result of the calculation presented
below, where P is the plaintext message with bit length Plen and T the result of the above
described MAC calculation.

Si := E (K, Ai) , for i = 1, . . . , r

S := S1|| . . . ||Si

C := (P ⊕MSBPlen (S)) || (T ⊕MSBTlen (S0))

The building blocks Ai contain flags, nonce N and counter i, which is incremented ac-
cordingly. The result of this is XOR-ed with the message plaintext P . However, the first
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building block S0 is not used for the encryption of plaintext. Instead it is XOR-ed with the
previously calculated MAC value and the result appended.
The decryption-verification algorithm behaves similar to the previously described compu-
tation. For the calculation the encrypted message C, nonce N , additional authenticated
data A and the key K are required.
At first C is decrypted and in the second step the MAC value T is calculated. The decrypted
value is calculated by using the same keystream as in encryption and XOR-ing it with the
received ciphertext C. Following on that the MAC value is computed in the same manner as
in the generation-encryption phase. If T and the computed value are equal, the decrypted
message is returned. If not, the algorithm will return INVALID.





CHAPTER 2

Related Work

The topic of secure commissioning of IoT devices is not completely new. Several different
approaches exist on how to securely commission IoT devices. The most common approach
is to use an Out-of-Band channel in combination with a radio channel. However, the usage
of an auxiliary channel often comes with additional hardware requirements like a photo
sensor or microphone.
Kovačević et al. [13] developed the Light channel for device Initialization and Radio channel
for Authentication (LIRA) protocol and a modified version LIRA+. The approach has the
disadvantage that IoT devices need to be capable to capture signals over the light. The
protocol makes it possible to commission several devices at the same time by placing them
on a flashing screen. This screen transmits a secret key to every single device. One out of
these devices will act as the group coordinator to verify the received keys, which is realised
with a master key. This master key serves as a parameter for generating the other keys.
For that reason the group coordinator is able to verify if the devices received the correct
keys. While the initial transmission of the keys is done by using LiFi, the communication
between the devices takes place on a public radio channel.
Another approach is to use an audio channel for communication, which is used by Soriente
et al. [14]. The commissioning takes place in two steps. In the first phase the IoT device
transmits cryptographic material via an audio channel. The receiving device uses this key
to encrypt other information and sends it back via the audio channel. The verification is
done by the user, who needs to compare audio sequences produced by both devices. This
can be seen as a drawback, since it cannot be assumed that the user is always capable to
commit this task correctly.
Kuo et al. [15] do not rely on the use of a Out-of-Band channel. Instead, the target device
is placed in a Faraday Cage, together with a keying device. The Faraday Cage is meant
to shield the communication between the devices. However, a disadvantage is the need for
additional hardware.
Commercial solutions for the issue of secure commissioning exist as well. The company
Electric Imp introduced the BlinkUp application [16]. BlinkUp has the purpose of connect-
ing a new device to the Wireless Fidelity (WiFi) network and to add it to the user’s account.
This is done by transmitting data from a mobile phone to the device with a flashing screen.
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A similar way of commissioning was developed as BlinkComm by Perkovi et al. [17] which
uses a differential coding scheme to make the transmission faster. This needs a photodiode
on the IoT device to receive the signal from the smartphone. In BlinkComm no logic was
used for error detection and correction to keep power and memory usage as low as possible.
Amazons Dash Button [18] is another commercial solution which uses ultrasonic sound to
allow a secure connection to the local WiFi network. Similarly to the BlinkUp application
the user needs to provide the WiFi credentials to a smartphone application. The smartphone
then delivers the credentials to the Dash Button via ultrasonic sound.



CHAPTER 3

Thesis Contribution

The goal of this thesis is the development of a commissioning protocol and furthermore
the implementation of a prototype. The protocol aims at providing a secure commissioning
standard which does fulfil the requirements of a constrained environment as described in
Chapter 1.1. For that reason, the communication is initially done via LiFi to transfer an
encryption key, which is then used to securely send the network credentials via wireless
communication back to the target device. This process includes user interaction as well.
In this chapter, the commissioning protocol is described in detail, with an explanation of
the design choices afterwards.

3.1 Specification of the Commissioning Protocol

The commissioning process of an IoT device following the specification of this thesis re-
quires user interaction and a smartphone with the corresponding application installed. It
is required that the smartphone receives signals over light. For that reason it needs to have
an integrated camera, which is available on customary devices. During the commissioning
process the smartphone’s camera needs to be placed in front of the target device’s LED to
capture the encryption key. In case of failure, for instance because the encryption key is
not correctly received, the application should inform the user to start over again.
The commissioning is launched by turning the target device on. The protocol flow is shown
in Figure 3.1. The IoT device first gathers an entropy value for generating a cryptographi-
cally secure key. A new key is generated each time the power button is pressed.
After successful key generation the message is created. It consists of a 1 B header, the
payload and a 9 bit trailer as depicted in Figure 3.2. The header includes information
about the version number and the length of the message in byte. The version number is
important for choosing the right encryption parameters in case the protocol is modified in
the future. The first bytes of the payload comprise a unique identifier of the target device for
addressing it. The size of it depends on the protocol standard used by the wireless interface.
The rest of the payload consists of the commissioning key. The trailer contains a Frame
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:IoTDevice :Smartphone :User

activate

new_key()

key

construct_message_with_FCS(key) .

message

. transmit_lifi(message)

receive_lifi()

message

calculate_FCS()

key

alt [key=true]
encrypt_credentials
(key,credentials) .

encrypted_credentials

transmit_wireless
(encrypted_credentials)

decrypt_credentials
(encrypted_credentials,key)

credentials

alt [credentials=true]

connect_to_network .
(credentials)

connection_success

. failure()

alt [connection_success=true]

. success()

Figure 3.1: Sequence Diagram of the Protocol
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Preamble SFD Version Message LengthHeader
{

Source Address

Key

Payload


FCS 0Trailer

{

Figure 3.2: Package Structure of the Message from IoT Device to Smartphone

Check Sequence (FCS) to allow error detection on the smartphone, calculated with a 8 bit
Cyclic Redundancy Check (CRC). The generator polynomial is x8 +x7 +x6 +x3 +x2 +x+1
with an initial seed of 0xff. The choice of parameters is discussed in Chapter 3.1.4.
The transmission of the encryption key data is done by using LiFi. The data is sent via
the status LED of the IoT device. The signal is captured with the smartphone’s camera.
For a correct transmission the smartphone should be placed as close to the target device
as possible. The communication starts with a preamble build up of the 7 bit pattern 1111
111 and a Start Frame Delimiter (SFD), represented as 0. This first byte is applied for
clock synchronization. Afterwards, the message is transmitted using Manchester Code. The
trailer finishes on a single 0 to turn the LED off. After that, the IoT pauses for a one bit
period to signal the end of transmission. Since it is not unlikely that a user misses the
transmission of the first bits, the IoT device retransmits the message one time.
After a successful reception of the LiFi message the smartphone runs the same CRC al-
gorithm over the message as the IoT device previously. If this calculation results in a
remainder different to 0 an error has occurred during transmission. In this case the smart-
phone prompts the user to restart the commissioning.
Alternatively if no error is detected, the smartphone uses the received commissioning key
for encrypting the network credentials in CCM mode. Additionally to the password, the
MAC value includes the message’s header to obtain integrity for it as well. The header is
made up of the following data:

• uint8_t version: version number of the protocol, which has to be equal to the
version number received from the IoT device.

• size_t pswd_len: specifies the length of the plaintext password.
• uint8_t nonce[nonce_len]: the nonce used for encryption of the length as specified

in the used protocol version.
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• uint8_t encrypted_msg[pswd_len+mac_len]: the ciphertext which consists of the
encrypted password and the MAC value.

This response is sent to the IoT device via its wireless communication interface. The
standard used for this wireless communication depends on the interface provided by the
target device. The IoT device uses the received information to decrypt the password with
CCM. That will prove the authenticity of the message as well. Only if the decryption was
successful and the authenticity was validated, the IoT device tries to connect to the local
network by using the received credentials. If a connection is established, the target device
turns the status LED on to notify the user about a successful commissioning. Otherwise
the commissioning process needs to be started again.

3.1.1 Generation of a Cryptographically Secure Key

The first step of the protocol is the collection of an entropy value for generating the en-
cryption key. A strong random number is crucial, otherwise an adversary could guess the
generated value [19] and use it for decrypting the network credentials later on. Further-
more it is important to generate a new key every time the device is switched on. If this
is not done a Man in the Middle (MITM) attack could take place while the IoT device is
delivered to the customer. The adversary would simply start the device himself, collect the
key and use it for decryption when the commissioning takes place. The detailed process of
key generation is highly dependent on the target device’s features. The implementation of
generating a cryptographically secure key is not in the scope of this bachelor thesis, but the
following aspects have to be considered.
As described by Schneider et al. [19], random numbers can be generated with a deterministic
algorithm, called Pseudo Random Number Generator (PRNG), which requires a seed value.
A PRNG used in a security related context has to be cryptographically strong, which means
that an adversary must not be able to predict a future random number after accessing one
result. An alternative is a True Random Number Generator (TRNG), which completely
relies on physical phenomena such as thermal noise or radioactive decay [20]. That leads
to unpredictable results if an adversary cannot extract the value as well or influence it.
However, as analysed by Schneider et al. [19] a TRNG can have several drawbacks such as
data availability and a limited amount of entropy. As a solution, a single value taken from
a physical process can be used as a seed value for a PRNG. In case the entropy source does
not deliver a high magnitude, care should be taken to either apply an amplifier or combine
several entropy sources. Besides that, the entropy source should be shielded, so that it is
not possible for an attacker to change the result.
For the scenario of highly constrained devices, an entropy source which does not need ded-
icated hardware should be used. As described by Holcomb et al. [21] an SRAM PUF is a
promising entropy source. A Physical Unclonable Function (PUF) uses physical character-
istics of a device as input to gain a unique result. The approach is based on the fact that
on start up the single cells can be different states which produces an unpredictable, unique
physical fingerprint. In that case, the Static Random Access Memory (SRAM) is used as
the source.
Another entropy source might be the Received Signal Strength Indicator (RSSI) level of a
transceiver as introduced by Latif et al. [22] for Wireless Sensor Network (WSN). The RSSI
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level is an indicator showing the power of a received signal.

3.1.2 Transmission via LiFi Using Manchester Encoding

The transmission of the encryption key has to be done in a manner that an adversary cannot
eavesdrop or even manipulate the data. For that reason it is a feasible solution to use LiFi
as communication channel, since it complies with these requirements and does not need
additional hardware. According to Tanenbaum [23] it is self-clocking, which is realized with
a transition in the middle of each bit period. This allows to use a single LED. A binary 0
is therefore transmitted with the pattern 01 while 1 uses the pattern 10. This halves the
bandwidth and for that reason doubles the transmission time. Manchester Code can be
implemented using On-Off Keying, which is a form of Amplitude-Shift Keying (ASK) and
uses the presence and absence of a signal for transmission. In the implementation developed
in this bachelor thesis turning the LED on stands for binary 1, turning it off for 0. The
chosen bitrate is limited by the smartphone’s frame rate. Most smartphones are nowadays
capable of 120 fps or higher. Since Manchester Code needs twice of the bandwidth the
chosen bitrate is 60 bit s−1.
Manchester Code is preferred over Differential Manchester Code, because the state of the
LED shall be zero after transmission of the trailer to turn it off. In Differential Manchester
Code this includes further computation, because a bit value is defined by either the presence
or absence of a transition at the beginning of an interval [23]. Therefore the state of the
LED depends in this case on the previous bit values, whereas in Manchester Code a trailer
ending on binary 0 will always turn the LED off.

3.1.3 Encryption with CCM

As described in Section 1.3.3, CCM allows both encryption and authentication on sym-
metric keys. Symmetric cryptography has the advantage that it needs less computational
power than asymmetric cryptography [24], which is an important factor in a constrained
environment. Furthermore CCM provides a convenient way of calculating the MAC value
with additional data included [12].
CCM requires to specify parameters, which are chosen in this thesis in the following way:

• L=2, which is the size of the length field in byte. This limits the length of plaintext. It
is the smallest value possible and allows 28L = 28×2 = 65536 B plaintext. This value
most probable satisfies any demands.

• M=8, which is the size of the MAC field in byte. This value keeps the message length
as short as possible while providing a strong level security.

• nonce_length=15-L=13, specifies the length of the nonce in byte.
• AES as cipher algorithm for encryption.

Besides that the header data is included in the MAC calculation but not encrypted. This
maintains the integrity for this part as well.
Using the same key for both authentication and encryption is considered to have a lower
security margin than using separate keys. However, it has been proven that CCM provides
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enough restrictions so that security can still be guaranteed in this case [25]. Since no security
flaws are known at present, CCM is an encryption mode satisfying the requirements of the
protocol.

3.1.4 Error Detection and Correction

The commissioning protocol includes an FCS to detect errors during the transmission of
the encryption key. The choice is based on the guidelines by Koopman et al. [26, 27].
The generator polynomial 0x1cf was selected regarding the message length, the CRC length
and the minimum Hamming Distance. The minimum Hamming Distance represents the
number of errors which can be detected [23]. A CRC with a length of 8 bit is preferred over
longer values, since this leads to increased transmission time. The size of messages of the
prototype is 184 bit excluding the FCS. According to the guideline the maximum possible
Hamming Distance for these parameters is 3 with the polynomial x8+x7+x6+x3+x2+x+1.
Besides that, the seed unequal to zero was chosen to allow zero-codewords, which does not
affect the performance of the algorithm otherwise. The algorithm detects up to 3 single-bit
errors and furthermore allows to identify burst errors with a length of up to 8 bit.
Another error detection is achieved by the usage of Manchester Code, since each data bit
requires a transition in the middle of its interval. For this reason a bit error only remains
undetected if both values are flipped.
In the case an error occurs the smartphone informs the user to initiate the commissioning
again. The error detection helps to keep the power consumption on the target device as low
as possible, since only messages using the correct encryption key are sent by the smartphone.

3.1.5 User Interaction

The user needs to initiate the commissioning process and has to hold the smartphone’s
camera in a manner that it can receive the signal from the LED. As stated by Kumar et
al. [28], it can be assumed that a user is more interested in a fast commissioning process
than in a high level of security. The user is focused on the device’s application and therefore
looks for a convenient and fast solution. As a result, the protocol in this bachelor thesis
was designed in a way that the user interaction is kept as small as possible.

3.2 Implementation

The implementation in this thesis was done on a STM32F103C8 bluepill board [4] using
RIOT-OS. RIOT-OS is an operating system for the deployment in IoT [29]. The board
features a status LED which is used for the LiFi communication. The implementation
includes the construction and transmission of the initial message from the IoT device.
Furthermore, the processing of the encrypted message is handled. The development of a
smartphone application and the generation of a cryptographically secure key are out of
scope of this thesis. Due to the last aspect the prototype uses a PRNG to attain a key of
128 bit.
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Figure 3.3: Package Diagram of the Prototype Implementation

The message’s payload contains the encryption key and an unique identifier of 48 bit length.
Furthermore, the FCS is calculated and added to the trailer. As described in Section 3.1,
the start of transmission may be missed by the receiver. For that reason the message is
sent out twice via LiFi.
For the prototype, the tasks of the smartphone are performed on the bluepill board as well.
This covers the encryption process and the creation of the response message.
The board validates the response message and extracts the credentials. If the received
version number conforms with the implemented version on the device, the password is
decrypted. RIOT-OS allows to implement CCM using AES on block and key sizes of
128 bit. After the decryption, the LED is turned on to notify the user about a successful
connection to the network.
As shown in Figure 3.3, the used functions are grouped in the two modules transmission
and cryptography. The module transmission handles the LiFi communication by provid-
ing the function transmit with its subroutines transmit_zero and transmit_one. After
successful connection to the network, the function transmit_success is called. The second
module cryptography includes the generation of a cryptographic key and the decryption of
messages. The file protocol_parameters.h is used for setting the parameters depending
on the used version.





CHAPTER 4

Thesis Outcome

This chapter comprises the analysis of both performance and security. The performance
analysis includes the conduction of experiments on the prototype implementation, together
with their evaluation. The security analysis shows different attacks during the commission-
ing process.

4.1 Performance Analysis

As described in Section 1.1, constrained devices are characterised by high memory restric-
tions and low computational power. Besides that the user wishes for a fast process, which
makes time an important factor as well. In the following, the conducted experiments for
evaluating the performance are described and evaluated.

4.1.1 Experiments

Two experiments were conducted to test the performance of the prototype. The transmis-
sion of the LiFi signal was tested in the first experiment. The second experiment is used to
investigate the memory footprint.

Transmission of LiFi Signal

The conducted experiment serves to measure the transmission time of the LiFi signal.
Furthermore it allows to verify the correctness of the transmitted data. The experiment
was conducted as described in the following.
A 24 MHz Salae logic analyser was connected for capturing the voltage on the LED pin.
A visualisation of the complete result is shown in Figure 4.1, with the corresponding bit
values beneath. The message consists in total of 193 bit, composed of a header with 8 bit,
176 bit payload and a 9 bit trailer. It was assumed that the source address is formed of
48 bit and a 128 bit cryptographic key is used.
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Memory Segment Prototype with
Additional Modules

Additional Modules Prototype Without
Additional Modules

text 16544 8080 8464
data 112 112 0
bss 2644 2644 0

Table 4.1: Memory Usage Results for Prototype and Additional Modules

Memory Storage
Medium

Total Available Memory Usage of
Prototype

Proportion

RAM 20 KiB 0 KiB 0 %
Flash 124 KiB 8.27 KiB 6.67 %

Table 4.2: Memory Consumption of the Prototype in Comparison to Available Memory

For correct identification of the values with the software pulseview [30] the clock synchro-
nization pattern needed to be changed to 0000 0001. As shown in both graphics, all bits
can be identified without any error.
The measurement of the transmission time assumes a message of 193 bit as described above.
The transmission time of with a bitrate of 60 bit s−1 can be calculated the following:

193 bit
60× 10−3 bit

s
= 3216.67 ms

For a single bit, the transmission time is calculated as:

1 bit
60× 10−3 bit

s
= 16.67 ms

The experiment in Figure 4.1 shows that the complete transmission takes 3217 ms. A single
bit is therefore transmitted in about 17 ms as presented in Figure 4.2.

Memory Consumption

The implementation is written for a bluepill board which has a flash size of 128 KiB and
a Random Access Memory (RAM) of 20 KiB [4]. According to RFC 7228 [7] it can be
classified in class 2 of constrained devices.
Since it can be assumed that the IoT device has already loaded RIOT-OS and libraries
for cryptography and timing, the result is compared to the memory consumption of these
components. The libraries are most likely necessary for other applications as well. The
used libraries are crypto, checksum, cipher_modes and random for cryptography as well
as xtimer for timing. Table 4.1 shows the results of the experiment. The project was
compiled with Link Time Optimisation (LTO), which is a inter-procedural optimisation
that allows to tread the different units of a compilation as a single file [31]. The results were
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obtained by running the command make info-buildsize. The last column of this table
shows the remaining memory consumption of the prototype without the above mentioned
components. In Table 4.2, these results are compared to the available memory.
The RAM usage is the sum of the memory sections bss and data, flash memory is calculated
by adding up data and text. As it can be seen in Table 4.2, the application uses no RAM.
Besides that, it consumes 8.27 KiB of flash, which are 6.67 % on the used bluepill board.

4.1.2 Evaluation

The experiment described in Section 4.1.1 can be used for analysing the correctness of data
transmission. Furthermore the time consumption can be seen. The results prove that all
bits can be correctly identified. Furthermore, the duration of the transmission of 3217 ms
is only slightly different to the theoretical value of 3216.67 ms. The deviation of the actual
result may come from measurement errors.
In terms of user friendliness a commissioning time of about 3 s in the successful case is
a satisfying value as well. For a deeper analysis of the commissioning time a user study
including the smartphone application would need to be conducted.
Besides that the second experiment shows that the memory consumption is very low, for it
only consumes 8.27 KiB of flash and nearly no RAM. According to RFC 7228 [7] constrained
devices which are classified in class 0 possess less than 10 KiB RAM and 100 KiB flash. Even
on these highly constrained devices the implementation would only use a reasonable amount
of memory.
For this reason, it can be concluded that the protocol can be implemented even in highly
restricted environment where a low memory consumption is needed.

4.2 Security Analysis

The proposed protocol aims at providing a secure way of commissioning an IoT device. In
the following, the security threads are analysed and evaluated. An attacker may aim at
gaining knowledge of the network access credentials itself. Besides that a Denial of Service
(DoS) attack could prevent the commissioning of the smartphone. Both scenarios are
evaluated with attack trees. This allows the analysis of different attackers, their techniques
and with that helping to understand the security risks of a system [32]. Section 4.2.3
evaluates the previously analysed security threads.

4.2.1 Access Network Credentials

Figure 4.3 shows the different attacks an adversary may launch to access the network
credentials during commissioning. In terms of security aspects, the attack would affect
the message’s confidentiality. The intruder could access information that is supposed to
be accessible only to the smartphone and the target device. In the following, the different
subtrees will be analysed by referring to the attack tree.
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The goal of accessing the network credentials can be reached by (I) capturing the network
credentials when they are typed in or (II) decrypting the credentials when they are sent to
the IoT device.
The analysis of sub goal I shows an attacker could (i) install a counterfeit application of the
original commissioning application. If the user tries to use the application to commission a
new device, the information would be available to the attacker as well. Another method to
achive this goal is to (ii) infect the smartphone with spyware, which is a form of malicious
software to collect data without the user’s knowledge [33]. This spyware would extract the
data and make it available to the attacker.
Sub goal II requires the intruder to get hold of the encryption key. One approach is to
(v) break the key computationally. According to the specification of AES by the Institute
of Electrical and Electronics Engineers (IEEE) [34], it is believed to be unfeasible to guess a
cryptographic key consisting of 128 bit. This requires on average 2n−1 guesses with n being
the length of the key, in this case that would lead to 2127 computations. According to the
NIST [35], AES-128 has a security strength which is at present unfeasible to break by an
attacker. This is all based on the assumption that a strong commissioning key is generated.
If this is not the case an adversary could be able to compute it within a shorter time.
Another opportunity is to (iii) eavesdrop on the LiFi signal sent out by the target device.
However, the commissioning can take place at any location chosen by the user. For that
reason the attacker needs to (c) install a camera in a way which is not suspicious for the
user and at a distance that is low enough to capture the signal. Since the range of the
signal is limited by the surrounding walls, the adversary needs to place the camera close.
The LiFi signal can also be captured directly by (iv) accessing the smartphone’s camera.
This requires to (d) install malware on the smartphone with the permission to use the
camera.
Another attack could be based on the assumption that if the entropy source for the key
generation is (e) being eavesdropped on or (f) influenced, a formerly strong PRNG will use
predictable seed values. With that manipulation it would be possible to (vi) calculate the
key and use it for decryption.
Provided that the attacker is able to get hold of the target device, it is also possible to
(vii) change the PRNG undetected so that it produces predictable results. The intruder
could (g) influence the manufacturing process or (h) get hold of the device while it is shipped
to the customer.

4.2.2 Denial of Service Attack to Prevent Commissioning

Another goal could be to run a DoS attack to prevent the commissioning as summarised in
Figure 4.4. The subtrees I and III aim at jamming the communication between smartphone
and IoT device. Another strategy is to stop one of the devices from working (III, IV). A
successful DoS attack would break the security goal of availability.
An adversary may (I) jam the communication between the devices in the first phase of
the protocol when the commissioning key is shared via LiFi. One approach to reach this
goal is to (a) install another source of light. This needs to be strong and close enough
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to (i) interfere with the signal sent out from the IoT device. The smartphone would only
receive binary 1 since it would be unable to distinguish between a high and low signal.
Once again, this requires the adversary to install a light source in the user’s environment
undetected. Furthermore the smartphone might already be able to filter additional light so
that it has no impact on the received signal. Even if it is successful, the user may notice
the undesired light if it is operating in the spectrum of visible light. In this case the signal
could be shielded with the hands or additional objects. The only solution for an adversary
may be the installation of a laser pointer, but this needs to be placed with high precision.
This will be impossible in most of the cases since the user will not hold the smartphone in
a predictable and fixed position. However, an infrared laser pointer would not be visible
for the human eye, but could still influence the camera’s perception.
The communication may be jammed in the second phase of the protocol as well. The adver-
sary could (II) listen to the wireless channel over which the encrypted network credentials
are send and alter it. In that case the IoT device will notice this because of the MAC value
included in the encrypted message, but will be unable to correct it.
As per the attack analysed in the previous section it is possible to compromise the smart-
phone. In this scenario the adversary plans to (III) stop the commissioning application from
working. This could be achieved with a (iii) virus that attaches itself to the application.
The last subtree aims at (IV) influencing the IoT device directly so that it cannot be
commissioned. If the adversary is able to (v, vi) get hold of the IoT device before it is
delivered to the customer, it could get compromised to stop working. Besides that, the
intruder could try to drain the IoT device’s battery and for that reason make it unable to
work. For this an adversary could (b) overwhelm it with messages via its wireless interface.

4.2.3 Evaluation of Security Attacks

As analysed in Section 4.2.1, an attacker may aim at stealing the network credentials.
The analysis of the security threads shows that an intruder who is able to monitor both
communication channels might be able to access this information. Attacks such as capturing
the LiFi signal through the smartphone’s camera aim at infecting the smartphone with
malware. Since the smartphone application is out of the scope of this thesis, the risk
of this cannot be evaluated. The prevention of the corresponding scenarios relies on the
development of the smartphone application and the user’s own responsibility. Besides that,
the usage of LiFi ensures that an receiver needs to be physically proximate. For that
reason, it is difficult to install a camera for capturing the signal without the user’s notice.
Furthermore it has been shown that it is unfeasible to guess a strong cryptographic key
of 128 bit. However, the manipulation of the key generation process cannot be maintained
through the protocol.
Attacks which aim at preventing the commissioning are difficult to defend. The highest
weakness lies within the wireless communication with the IoT device. This can be misused
to either drain the device’s battery or to add random noise to the message. Although the
LiFi communication may also be disturbed, it is difficult for an attacker to install a source
of light without notice of the user and in a position that it is able to interfere with the IoT
device’s signal. As for the attack on the network credentials, the risk of an attack which
manipulates the smartphone is difficult to evaluate.
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It is especially important that the message’s confidentiality is preserved, since otherwise an
adversary could gain access to a whole network. All in all it can be concluded that the
protocol introduces a large number of countermeasures to make the stealing of the network
credentials improbable. The prevention of a DoS attack is difficult to ensure through the
commissioning protocol.





CHAPTER 5

Conclusion

In this chapter, the specification of the commissioning protocol is summarised. It is evalu-
ated how the requirements and goals of this thesis, which were identified in Chapter 1, are
met. As a result, future work on the protocol is identified in the last section.

5.1 Summary

This thesis introduces a protocol which allows the secure commissioning of IoT devices. The
protocol was tested with a prototype implementation and evaluated in terms of performance
and security. The commissioning protocol has been proven as an approach that satisfies the
described requirements in the field of IoT with focus on security.
The protocol makes use of the available hardware on IoT devices to allow deployment in
a wide field. The only requirement on the devices is a LED. Additionally the user has
to install an smartphone application as counterpart. Differently to other approaches the
protocol uses a self-generated cryptographic key to securely share the network credentials
with the target device. This cryptographic key is transferred to the user’s smartphone
by using LiFi, which operates as an Out-of-Band channel and reduces therefore the risk
of eavesdroppers. The transmission uses Manchester Code as a self-clocking line code to
make the usage of a single LED possible. By using the received symmetric key, the network
credentials can be securely shared with the IoT device over its wireless interface. The
encryption is done with CCM, which provides not only integrity but also authenticity of
the message. The received credentials allow the target device to connect itself to the local
network.
A prototype was used to analyse the memory consumption on the target device. The
application consumes only 8.27 KiB of flash memory and no RAM. For that reason, the
application is a feasible solution for devices with high restrictions on memory.
The user experience plays an important role in many applications of the IoT, where a
convenient process is often desired. A user who is planning to integrate devices such as
temperature sensors in a smart home network would only need to install the commissioning
application on his smartphone and hold its camera in front of the LED. Since most IoT
devices already use an LED to notify the user about correct operation this can serve as



28

the transmitter of the signal. The same method could be used to integrate other devices
into the network as well, so that the user does not need to get familiar with other com-
missioning strategies. Besides that, the commissioning will only consume about 3.217 s if
no retransmission has to be done. This result should satisfy the user’s demands of a fast
commissioning process. The low memory footprint makes it also possible to integrate the
application on a wide range of devices.
The security attacks on the protocol have been evaluated, by analysing an adversary who
aims at gaining knowledge of the local network credentials and a DoS to prevent the com-
missioning. In both cases, it was evaluated that the highest risk lies within the smartphone
application which could be infected with malware. Other attacks require the adversary
to be physical close. The communication between the devices utilises a high number of
security measures that make attacks improbable.

5.2 Future Work

The prototype of the application does cover the commissioning process on the target device.
In addition, a smartphone application as the counterpart has to be developed to make a
complete realisation of the specification possible. This would also make a thorough analysis
of the reliability possible.
Another aspect is the generation of a cryptographically strong key on the IoT device. A
concept for this was presented in this thesis as well. As the next step this has to be included
in the implementation. If all components are available, a user study should be conducted
to analyse the convenience of the commissioning.
Besides that further variants of the protocol could be developed. As it was shown in
Chapter 4.2.3, an adversary who is able to monitor both the LiFi signal and the response
channel might be able to access the credentials. As a result, asymmetric encryption could
be used instead. The feasibility of this largely depends on the application area, since this
type of cryptography is in need of higher computational power [24].
Furthermore it is possible to use another Out-of-Band channel for securely sharing the
encryption key. If an microphone is available instead of a LED ultrasonic sound could be
used, which can be received by a smartphone as well. In the following it would need to be
tested if this fulfils the requirements on security, reliability and user experience.
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Appendix

A.1 Parameters Used For The Prototype

1 # ifndef PROTOCOL_PARAMETERS_H
2 # define PROTOCOL_PARAMETERS_H
3
4 # define COMMISSIONING_PROTOCOL_VERSION 0
5
6 # define ADDRESS_LEN_BYTE 6 // unique

identifier as address of IoT device
7 # define PSWD_LEN_FIELD 2 // parameter for

ccm: space needed for encrypting the byte value of password length
8 # define PSWD_MAX_LEN_BYTE 16 // assume that the

credentials are no longer
9 # define KEY_LEN_BYTE 16 // 128 bit key

10 # define MAC_LEN_BYTE 8 // parameter for
ccm: length of MAC value

11 # define MAX_MSG_LEN 40 // max size of
message from smartphone to iot device

12 # define LIFI_PACKET_LEN ( KEY_LEN_BYTE + ADDRESS_LEN_BYTE + 2) // length of
package transmitted via lifi: header (1 Byte)+key (16 Byte)+FCS (1 Byte)

13 # define NONCE_LEN_BYTE (15 - PSWD_LEN_FIELD ) // parameter for
ccm: length of nonce

14 # define ADD_DATA_LEN_BYTE ( NONCE_LEN_BYTE + 2) // parameter for
ccm: length of additional data to be encrypted

15 # define CIPHERTXT_LEN_BYTE ( MAC_LEN_BYTE + PSWD_MAX_LEN_BYTE ) // length of
ciphertext

16
17 # endif
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