
FACULT Y OF

COMPUTER SCIENCE

Communication and Networked Systems

Master Thesis

Enhanced CoAP resource discovery - Application
layer interfaces and highly targeted query filters

Jawad Ahmad

Matr. 209873

Supervisor: Prof. Dr. rer. nat. Mesut Güneş
Assisting Supervisor: MSc. Marian Buschsieweke

Institute for Intelligent Cooperating Systems, Otto-von-Guericke-University Magdeburg

March 11, 2019

Abstract

Abstract

Constrained Application Protocol (CoAP) has the potential to be a key actor in improving
the Internet of Things (IoT) ecosystem. Despite its strengths, CoAP’s standardization is
still under development; thus, CoAP suffers from a lack in maturity in certain regards.
Resource discovery is such an aspect where CoAP’s standard methodology exhibits inad-
equacy. This deficiency is exemplified by a use-case scenario where employing standard
methodology of CoAP’s resource discovery is shown to be inefficient in terms of both time
and space. One of the most significant shortcomings of the standard methodology, in par-
ticular, is its incapability to filter resources based on individual attribute values. This thesis
presents a solution to this limitation by implementing a query processing layer on top of a
standard CoAP server, allowing highly targeted resource filtering. In addition to decreasing
the payload sizes through the use of complex filters, the proposed implementation exercises
the use of Concise Binary Object Representation (CBOR). The performance evaluation has
shown that CBOR reduces payload sizes by as much as 45% when compared to plain-text
encodings such as JavaScript Object Notation (JSON). The performance evaluation also
revealed that for queries that targeted 92% of the total resources, a reduction of up to 54%
response sizes as compared to a standard CoAP server was seen. The proposed implemen-
tation is shown to have successfully filtered resources by attribute values while being time
and space efficient.

Contents

List of Figures vii

List of Tables ix

Listings xi

Acronyms xiii

1 Introduction 1
1.0.1 Rise of World-Wide-Web . 2
1.0.2 Internet of Things . 3
1.0.3 CoAP . 4

1.1 Motivation . 6
1.2 Thesis Structure . 9
1.3 Related Work . 9

2 Thesis Contribution 13
2.1 Implementation . 13

2.1.1 Architecture of /cbor/ . 13
2.1.2 Architecture of /cbor/attr . 19
2.1.3 URI response handling . 21

2.2 Experiments: Correctness . 23
2.2.1 Experiment 1 . 24
2.2.2 Experiment 2 . 25
2.2.3 Experiment 3 . 26

2.3 Experiments: Performance . 26
2.3.1 Experiment 4 . 27
2.3.2 Experiment 5 . 27
2.3.3 Experiment 6 . 27
2.3.4 Experiment 7 . 27

3 Thesis Outcome 29
3.1 Evaluation . 30
3.2 Conclusion . 32
3.3 Future Work . 33

vi

Bibliography 37

Appendix 38
A.1 gen_sensors.py . 39
A.2 Sensor Configuration . 40
A.3 verify_results.js . 41
A.4 benchmark.sh . 42

List of Figures

1.1 TCP/IP layers . 2
1.2 CoAP GET message . 5
1.3 Quantity of packets vs number of clients and sensors 8

2.1 Request Handling For /cbor/ Uniform Resource Identifier (URI) 14
2.2 A Set of Sensors Returned By Sensor Filter 16
2.3 Serializing Sensor Data . 17
2.4 Request Handling For /cbor/attr URI . 19
2.5 Depiction of Sensor Summary as Linked List of Linked Lists 20

3.1 Response Time for Filtered Data versus Number of Sensors 31
3.2 Size of Response versus Number of Sensors 32
3.3 Normalized Response Time for Filtered Data versus Number of Sensors . . 33
3.4 Response Time for A Fixed Response Size versus Number of Sensors 34
3.5 Response Time vs Query Expression . 34
3.6 Response Sizes for Different Server Types 35

List of Tables

1.1 Comparison of TCP, UDP and CoAP . 6

2.1 Sensor DB Contents . 20

Listings

1.1 Email from sender device . 1
1.2 HTTP GET vs CoAP GET . 5

2.1 Stdout From Query Parser . 15
2.2 Stdout From Sensor Filter . 15
2.3 CBOR Encoding of a Sensor . 17
2.4 Sensor Summary in JSON . 21
2.5 Raw CBOR Response From /cbor/attr . 22
2.6 Decoded Response For /cbor/attr . 22
2.7 Raw CBOR Response From /cbor . 22
2.8 Decoded Response from /cbor/ . 23

Acronyms

AWS Amazon Web Services. 31

CBOR Concise Binary Object Representation. iii, 17–19, 21–24, 27, 29, 32
CoAP Constrained Application Protocol. iii, 4–11, 13, 16, 18, 19, 26, 27, 29, 31, 32
CoRE Constrained RESTful Environments. 32

HTTP HyperText Transfer Protocol. 2, 4, 5, 9

IANA Internet Assigned Numbers Authority. 29
IoT Internet of Things. iii, 3, 9

JSON JavaScript Object Notation. iii, 1, 7, 17, 18, 21, 24, 27, 30, 32

NCP Network Control Protocol. 1

QoS Quality of Service. 10

RD Resource Directory. 7
REST Representational State Transfer. 2

TCP Transmission Control Protcol. 4, 5
TCP/IP Transmission Control Protocol / Internet Protocol. 1, 2

UDP User Datagram Protocol. 4, 5, 18
URI Uniform Resource Identifier. 5, 13, 14, 19, 21, 22, 29

WWW World Wide Web. 2

CHAPTER 1

Introduction

Invention of Transmission Control Protocol / Internet Protocol (TCP/IP) [1] marked the
advent of modern internet, enabling communication between computers that were thou-
sands of miles apart. The layer-based nature of the protocol allowed gradual and seamless
integration of existing networks that were running on older and inefficient protocols like
Network Control Protocol (NCP) [2]. The design principle of TCP/IP enables the applica-
tion layer of the host at one end of the communication channel to assume a direct connection
to the application layer of the host at the other end. The transport layer can safely assume
so as well. This is depicted in Figure 1.1. The solid lines describe the actual path of the
data packets, whereas the dashed lines are virtual direct data paths.
In an effort to demonstrate a peculiar characteristic of TCP/IP, an imaginary email service,
that resides at the sender side is illustrated. It is also imagined that the email client resides
at the receiver end. The email message, shown in Listing 1.1 as JSON, is generated at the
application layer of the sender.

{
"From": "Device1",
"To": "Device2",
"Subject": "Hello",
"Body": "Hello from Device1"

}

Listing 1.1: Email from sender device

Even though this payload goes through various transformations and encapsulations while
passing through different layers, the data that the application layer of receiver eventually
gets is exactly the same 1 as Listing 1.1. The receiver side is free to parse the JSON
structure and extract the fields. This design scheme has some interesting outcomes. The
sender could have sent any kind of data and the receiver would have received it unaltered.
This aspect of TCP/IP gave rise to Application Layer Protocols, where the applications are
free to encapsulate/interpret data in whatever way they desire.

1assuming a reliable transmission protocol

2

Application

Transport

Internet

Link

Sender

Routing

Link

Internet

Transport

Application

Receiver

Figure 1.1: TCP/IP layers

1.0.1 Rise of World-Wide-Web

TCP/IP allowed basic services, like file-sharing and email, to exist between computers on
the internet. However, the “web” as we know it today didn’t exist until the invention of
World Wide Web (WWW) in late 1980s and formalization of HyperText Transfer Protocol
(HTTP) [3] in late 1990s. HTTP is an application layer protocol that introduces the
concept of resources hosted / served on web-servers and requested by web-clients. A resource
encompasses any form of content that a server is willing to offer to a client. For example, a
list of names of employees of a company is a resource that the company’s server could offer.
HTTP operates on a request-response model. The clients are responsible for initiating a
request for a resource, while the servers are responsible for returning the requested resource
as a response. HTTP is also a stateless protocol, i.e. every new request by clients is
independent of all past and future requests. In other words, requests are self-contained
transactions that include all client-side information that servers require in order to process
the request. This leads to server designs that do not require the servers to store the
client information. This form of interaction between clients and servers is referred to as
Representational State Transfer (REST) [4]. Servers that operate in RESTful style support
HTTP verbs such as: GET, for retrieval of resources; POST, for creation of resources; PUT,
for replacement of current resource representation with some other representation; PATCH,
for updating the resources; and DELETE for deletion of resources.
This begs a question: How does a client know what resources are available on server? The
answer to this question is manifold. A common approach among web-servers is to present
the client with an index.html page, which lists all the available links. Nonetheless, because
the clients are supposed to be humans, any technique that makes it easy for a client to find
the relevant content can be implemented. This is the basis of User Experience field in the

3

recent web technology. However this changes quickly when the clients are not humans, but
machines.

1.0.2 Internet of Things

The term IoT refers to the eco-system of small, low-cost and low-power computers that
are connected to the internet. These computers, generally called embedded devices, can be
found everywhere nowadays; like inside home-appliances, vehicles, wearables, and buildings
to name a few. These devices mostly have very low processing power and available memory
space, are powered using low capacity batteries, and operate in lossy networks. On the
other hand, these devices are expected to last for years while reliably transmitting and
receiving data, which is made possible by virtue of the increased power efficiency [5]. The
ever-increasing usage of these devices can be attributed to the fact that the prices of low-
end microprocessors have been dropping for decades [6]. Most of these devices have data
to offer to entities that inquire for it.
In order to explore possibilities of ways for a device to transmit its data, an example of
a sensor that can measure temperature in both Celsius and Fahrenheit units is given. As
an embedded device, the sensor is capable of transmitting the temperature values to other
devices in its network. There are two ways this sensor can transmit its data, listed below
with their advantages and disadvantages.

1. Broadcast the temperature values to all devices with a certain frequency.
a) Pros:

i. Easy to implement.
ii. Energy consumption is constant regardless of number of devices in the net-

work.
iii. Sensor device can sleep between broadcasts to conserve power.

b) Cons:
i. Broadcasts are a wastage of energy and network bandwidth if none of the

devices in the network needs sensor data.
ii. High Network traffic in case where there are a lot of similar devices that

broadcast data.
iii. The consumer devices may not agree with the broadcast frequency.
iv. Requesting devices have to be in a listening state all the time in order to

capture all broadcasted data.
2. Wait for a request from a device in the network, and respond with a temperature

value.
a) Pros:

i. Energy is conserved when there are no requesting devices.
ii. Low network traffic if the number of requesting devices, or the request fre-

quency, is low.

4

iii. Requesting devices have control over the data transmission frequency.
b) Cons:

i. Relatively harder to implement.
ii. High network traffic if the number of requesting devices, or the request

frequency, is high.
iii. Sensor device has to be in a listening state all the time in order to capture

all requests.

As evident, the choice of data transmission methodology depends on the application sce-
nario. In most practical applications, however, there are numerous such sensor devices.
Because the first method is inefficient for many broadcasting nodes, the second method is
almost always the preferred one. This method, where the sensor device waits for request
before responding with data, is reminiscent of an HTTP server as discussed in Section 1.0.1.
The sensor device could define the following two HTTP resources:

1. GET /temp/celsius

2. GET /temp/fahrenheit

As discussed earlier, embedded devices such as the sensor device in question, have low
computing power and available memory. The idea of implementing a full-fledged HTTP
server inside this kind of devices is far-fetched. Furthermore, in practical cases like these
the networks are lossy. HTTP uses Transmission Control Protcol (TCP) as the underlying
transport mechanism which is unsuitable in a lossy environment. Instead, User Datagram
Protocol (UDP) [7] is better suited than TCP in these scenarios for the reasons explained
next.

1. UDP is connection-less, as opposed to TCP which is connection based. This means
that in UDP, the two communicating devices don’t have to go through a lengthy
connection negotiation process.

2. UDP messages are “unreliable”, as opposed to TCP whose messages are reliable. This
may sound a negative aspect for UDP at first, but really it simplifies and quickens
the process of messaging between two simple nodes.

3. UDP header size is 8-bytes, versus TCP’s 20-bytes header size, making UDP payloads
inherently smaller.

4. UDP has a concept of “message boundary”. This means that when a device sends
a UDP message, the receiving device either gets the full message or nothing at all,
further simplifying the messaging process. In TCP, there is no message boundary.
So an application-level message can get partially transmitted or received before the
connection drops.

1.0.3 CoAP

As stated in Section 1.0.2, HTTP is unsuitable for constrained embedded devices that offer
resources. A protocol that is somewhat similar to HTTP but with only basic features,
and uses UDP will be ideal. CoAP [8] is an attempt at designing such a protocol. CoAP
uses HTTP-like request-response model, and has the concept of resources. It specifies basic

5

0 1 2 3 4 5 6 7

0 1 0 1 0 0 0 1
version NON msg type token length

0x51:
⎧{
⎨{⎩

0 0 0 0 0 0 0 1
request GET

0x01:
⎧{
⎨{⎩

1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 1

Message ID
0xabcd:

⎧{{
⎨{{⎩

1 1 1 0 1 1 1 1
Token

0xef:
⎧{
⎨{⎩

Figure 1.2: CoAP GET message

HTTP verbs like GET and POST. It runs atop UDP bringing all the benefits of UDP as
discussed in Section 1.0.2 along with it. CoAP does allow using TCP too in case the appli-
cation design absolutely demands it [9]. CoAP uses binary components for the messages,
as opposed to plain-text in HTTP. Listing 1.2 shows the smallest possible HTTP GET vs
CoAP GET message.

HTTP: GET / \gls{HTTP}/1.1\r\nHost:www.example.com\r\n\r\n
CoAP: 0x51 0x01 0xab 0xcd 0xef

Listing 1.2: HTTP GET vs CoAP GET

HTTP needs 25 bytes, excluding www.example.com, versus 5 bytes for CoAP. It can already
be seen that CoAP messages are not meant be human-readable. It is harder to construct a
CoAP message by hand. Figure 1.2 shows a quick breakdown of the CoAP GET message.
As mentioned earlier, CoAP uses UDP as the transport. So the missing reliability mech-
anism is built into CoAP itself at the application layer. In Figure 1.2, the message type
is NON, or non-confirmable. NON messages are fire-and-forget kind of messages, where the
sender doesn’t expect an acknowledgement from the receiver. The sender still needs to
temporarily keep track of the Token values sent in case there is any response from the
receiver, which will have the matching Token value. Another kind of message type is CON,
or confirmable. These messages expect an ACK type of message as response from the re-
ceiver, and are repeatedly sent until they get the acknowledgement. Message IDs are used
to match the sent message with their ACK responses, so the sender needs to keep the IDs for
CON messages in memory. Responses to requests of type CON are normally CON themselves.
This means the original requester needs to send back an ACK after receiving a response. NON
responses are usually sent for NON requests, but can be CON too. Shown in Table 1.1 is a
comparison between TCP, UDP, and CoAP.
Another useful feature of CoAP is the discovery of all services offered by a server. Any
inquiring entity can call GET /.well-known/core to get a list of URIs that are available.

6

TCP UDP CoAP

Semantics Connection
oriented Datagram oriented Request/response

semantics
Reliability Yes No Yes, optionally

Order of Data FIFO
(order preserved)

Datagrams may arrive
out of order

May arrive out
of order for

NSTART > 1 (see [8])

Duplicates Detected
and ignored

A datagram may arrive
more than once Detected and ignored

Congestion
Control Yes No Yes, but basic

16-bit Port
Number Yes Yes Yes (as it uses UDP)

CRC
Checksum Yes Yes Yes (as it uses UDP)

Table 1.1: Comparison of TCP, UDP and CoAP

Here’s an example of resource discovery request-response pair.

GET /.well-known/core

</temperature/celsius >;rt="temperature -c";if="sensor",
</temperature/fahrenheit >;rt="temperature -f";if="sensor"

CoAP’s standard resource discovery mechanism is useful as far as listing all resources offered
by a server is concerned. In most practical applications, however, the inquiring entities are
not interested in everything a server has to offer. The requesting devices need a way
to filter the resources list, absence of which has serious consequences for practicality of a
device network. Because of this, CoAP describes a methodology to tailor resource discovery
requests for the server to return only the resources that match a certain criteria. As will be
explained in Section 1.1, this criteria specification is basic at best. In other words, CoAP’s
resource discovery is useful for trivial situations, but proves to be mundane in complex
scenarios such as the use case discussed in Section 1.1.

1.1 Motivation

The following use case is used to exemplarily point out the challenges and limitations of
CoAP’s standard resource discovery. The use-case conceptualizes a 15 storey building with
25 rooms on each floor. A company is given a contract to install sensors of different kinds
throughout the building. The contract states that sensor management user-interface (UI)
needs to have the following capabilities:

1. The UI needs to act as a CoAP client, with all communication going to a CoAP
resource directory.

2. Ability to see the sensors location: floor and room

7

3. Ability to see the sensors type: unit
4. Ability to see and configure a gain parameter for each sensor that will allow the

management team to calibrate sensors regularly.
5. Ability to service queries of the following nature: Show all sensors that are in room 1

to 4 of floor 3 and floor 11 with gain smaller than 2.1, or sensors in room 1 of any
floor with gain bigger than 3.3

A design engineer would deem the standard CoAP Resource Directory (RD) [10] model an
almost perfect fit, with a few limitations. The RD can present a “lookup interface”, which
can enlist all sensors registered in the RD. Here’s an example of how a resource lookup for
5 different sensors could look like based on [11]:

REQ: GET /rd-lookup
RES: 2.05 Content (application/link-format)

</rd-lookup/s>;if="core.b"

REQ: GET /rd-lookup/s
RES: 2.05 Content (application/senml+json)

{"e":[
{"n": "accel", "r": 19, "f": 11, g: 1.97, u: "g"},
{"n": "temp", "r": 2, "f": 14, g: 4.71, u: "degC"},
{"n": "humid", "r": 21, "f": 0, g: 3.72, u: "%"},
{"n": "press", "r": 10, "f": 1, g: 1.35, u: "Pa"},
{"n": "light", "r": 12, "f": 9, g: 0.7, u: "lx"}

]}

REQ: POST /rd-lookup/s/accel/g
1.5

RES: 2.04 Changed

REQ: GET /rd-lookup/s/accel
RES: 2.05 Content (application/senml+json)

{"n": "accel", "r": 19, "f": 11, g: 1.5, u: "g"}

As evident from the request/response pairs above, company specification number 1 through
4 are well covered. All sensor attributes can be listed and printed on UI screen after parsing
JSON output from 2nd request. 3rd request is used to change gain for acceleration sensor.
4th request is used to confirm if the gain has indeed been changed.
Note that the UI software is already fully aware of the sensor resource type and its interface.
In other words, it knows what n, r, f, g and u mean in response for 2nd request. It also
knows that a POST request is required at /rd-lookup/SENSOR/g to change gain value of a
sensor.
One could argue that specification number 5 is also fully satisfied because the UI software
already has all the data for sensors. All it has to do is apply filters to data it received from
the above requests, and present to the user. That is entirely true. However, this approach
has some dire scalability issues. In the case where there is not one but several UI clients,
if each client downloads all data each time it is powered on for simple queries like Show
sensors from room 1 of floor 1, there is going to be huge data overheads and wastage of
bandwidth. Not only that, but energy consumption also increases due to more wireless
activity. Increasing the number of sensors worsens these costs even more, leading to a high
probability of network congestion. Figure 1.3 shows the increase in packets quantity as the
number of clients is increased from 1 to 100, and number of sensors is increased from 5 to

8

20 40 60 80 100
6

8
10

0

500

1,000

no. of clients no. of sensors

no
.

of
pa

ck
et

s

Figure 1.3: Quantity of packets vs number of clients and sensors

100.
One possible solution to this problem is to let the resource directory do the filtering, and
return the filtered sensors that match the query. In fact, [10] states that each registered
resource can have arbitrary attributes which can be used for lookup using a query string.
For example, the following request/response pairs lookup sensors that are in room 7 of floor
10:

REQ: GET /rd-lookup/s?r=7&f=10
RES: 2.05 Content

{"e":[
{"n": "humid", "r": 7, "f": 10, g: 3.72, u: "%"},
{"n": "light", "r": 7, "f": 10, g: 0.7, u: "lx"}

]}

The query string r=7&f=10 in the above request could be interpreted in two ways by the
resource directory:

1. Show sensors from room 7 AND floor 10.
2. Show sensors from room 7 OR any room of floor 10.

The resource directory is free to interpret the query in any one of the above ways, but not
both. This severely limits the complexity of queries that a CoAP client can issue. The
reason is that there is no standard way of incorporating AND / OR operators in the query
string. Furthermore, the = token, acting as a mere key-value separator, only allows for is
equal to type of comparison. There is no way to incorporate is less than or is greater than
comparisons.
This immediately presents a problem for the design engineer trying to express the query
mentioned in the specification number 5 in a standard way. The following expression fully
describes the query in question:

(((room<5&floor=3)|(room<5&floor=11))&gain<2.1)|(room=1&gain>3.3) (1.1)

9

The proposed implementation covers this particular problem, while keeping the data trans-
actions involved in the process as energy-efficient and network-friendly as possible.

1.2 Thesis Structure

This thesis is structured to build up a case, starting from Chapter 1, towards a better
CoAP resource discovery. Introduction to IoT, importance of CoAP, and explanation of
how CoAP is a counterpart of HTTP in embedded ecosystem are transcribed in Chapter 1
section 1.0.1 through 1.0.3. A use-case scenario, explaining how CoAP’s standard resource
discovery falls short in certain situations, is described in Section 1.1. Review of current
research regarding CoAP’s discovery mechanisms is done in Section 1.3. The section also
explores how current research’s focus is aligned to the use-case described in the thesis.
The solutions to the problems that the use-case puts forth are presented in Chapter 2.
The software architecture and its interface to the outside world is described in Section 2.1.
Experimentation employing random environmental configurations is documented in Sec-
tion 2.2.
The proposal is completed by evaluation of the experimental results in Chapter 3. The
conclusion of the thesis is also presented in this chapter.

1.3 Related Work

D. Pfisterer et al. [12] describe SPITFIRE: a globally linked network of devices with well-
defined “Semantics”, which allows machines to deduce logic based on a globally accessible
knowledge base. They describe a use-case scenario where empty rooms in a building need to
be found. SPARQL is used to search in the knowledge base based on basic node attributes,
e.g. sensor location. Their work focuses on harnessing simple device states for complex
logic inference.
C. Perera et al. [13] propose CASSARAM: a context-aware sensor search system where
user can describe attribute values for exact and ranked matching in their queries. The
paper focuses on decreasing sensor search processing time and memory usage by optimizing
search algorithm at the server end. The use cases include large scale sensor databases, where
multiple powerful machines are involved. They describe sensing-as-a-service application as
their primary motivation.
M. Ruta et al. [14] describe semantic matchmaking on the data generated by participating
nodes. The results are ranked by similarity to the search criteria. They propose CoAP
based gateways that keep record of local nodes activity, and use that record to respond to
resource discovery requests. The discovery requests are composed in Manchester Syntax,
incorporating discrete values for the attributes. However, it is not clear how continuous
attributes are handled. The data overheads, as compared to standard CoAP resource
discovery, for complex queries involving multiple resource types is not explained either.
Another two papers by M. Ruta et al. [15, 16] employ similar methodology with a very
specific use case. The following is an example query from one of the papers:

10

coap://193.204.59.75:5683/.well-known/core?&ro=SSN-XG-IRI&sd=yyyyyy=&at=30004&lg
=16.763571<=41.079769&md=800&st=2&sr=70

The query mentions latitude lt, longitude lg, and a maximum distance md to search for
sensors. The server responds with the following 2 sensors that lie within that radius

</Hts2030HumidSens >;ct=0;ct=41;at=30004;lg=16.768277; lt=41.077286;md=480;ro=SSN-XG-
IRI;sd=aaaaaaa; title="Humidity-Sensor -2030", </BitLineAnemomSens >;ct=0;ct=41;at
=30004;lg=16.758347; lt=41.081983;md=500;ro=SSN-XG-IRI;sd=bbbbbbb; title="
Anemometer -Sensor -111",

</H>;sd=ccccccc;sr=9.12

A. Yachir et al. [17] propose a resource directory model where the resources have four custom
attributes: entity, reference ontology, Service Quality of Service (QoS), and Device QoS.
In a resource discovery request the attributes entity and reference ontology can acquire a
value from a set of predefined values. The article presents an example for a user requesting
temperature for kitchen with high energy level, very high reliability, a medium response
time, a very low energy consumption, and a “matching threshold” of 0.6. The request looks
like this

coap://addressRD? ent="kitchen"; rt="temperature"; dqos="Energy_level: high |
Reliability: very high"; sqos="Response_Time:medium | Energy_Cost: low"; sr="0.6"

The response contains a description of the sensor of the following nature

/</pathRes1 >;ep="Imote2Sensor";et="http://emp.org/Ontologies/Device.owl";ent="Kitchen"
;entro="http://emp.org/Ontologies/Space.owl";dqos="Energy_level:70:1|Reliability
:0.6:1";rt="getTemperature|temperature|http://emp.org/Ontologies/"

This proposal meets most of the requirements of the use-case scenario. However, it does
not address the scenario where the request could contain attributes with multiple values
tied together with other attributes through a relational logic.
There has been a lot of work pertaining resource discovery in embedded systems in general,
and CoAP in particular. The design goal of CoAP is to warrant the usage of low-end
devices, both in the server and client roles, while keeping the functionality between them
feature-rich. Unfortunately, the majority part of this research only focuses on the latter part,
e.g. making automatic resource discovery in very large scale networks work. Although these
techniques may still be used in a network of relatively smaller scale, the elements involved in
the architecture of these solutions are often too big to be incorporated in practical scenarios.
For example, the assumption that a small building’s energy monitoring system has access
to the same kind of data or information as the energy management system of a whole city
does has practical limitations. This also applies to the processing power; the majority of
the research gives little to no attention to the fact the most embedded servers are unable to
run a full-fledged query language servers, such as SPARQL servers. Not only that, but it
is often inaccurately assumed that all nodes in a network have access to internet or servers
in an external network.
The network traffic related aspects, i.e. keeping the number and size of data transactions
to a minimum, are mostly ignored. Although using CoAP as the primary communication
protocol automatically mitigates these problems to an extent, it does not however eliminate

11

them completely. M. R. Khaefi et al. [18] present a solution to reduce message payloads
pertaining to resource discovery among a large number of nodes. The approach, named
CoAP-PBF, employs Partitioned Bloom Filters to keep record of each node’s services. The
paper shows that employing a technique as simple as using binary messages, instead of
plain-text, decreases the payloads by orders of magnitude.
The proposal presented in this thesis will keep all these limitations in perspective while
suggesting solutions to the problems as they surface.

CHAPTER 2

Thesis Contribution

The standard CoAP discovery procedure proved to be insufficient in practice for a number
of use cases. This can easily be observed when looking at the use described in the scenario in
Section 1.1. It was asserted that in order to fully satisfy the building owner’s requirements,
the resource directory needs to be able to process queries of the form 1.1. However, it was
made evident in Section 1.1 that there is no standard way of processing the tokens that
appear in the query expressions of this nature.
The symbols | and & represent logical operators AND and OR respectively. The usage of
comparison / relational operators < (smaller than) and > (bigger than) in addition to =
(is equal to) can be seen. The implementation proposed in this section will enhance the
query processing capabilities of a standard CoAP server by adding parsing, processing and
response handling for the query expressions of the form similar to 1.1.

2.1 Implementation

The implementation proposed in this thesis offers two CoAP URIs:
1. POST /cbor (with query expression as request body)
2. GET /cbor/attr

2.1.1 Architecture of /cbor/

Figure 2.1 shows an overview of the architecture of the first URI (/cbor/). Afterwards,
each block’s inner functionality will be explained.

Query Parser

The request to /cbor/ starts with a POST call, with the query expression as the request
body. The raw expression is fed to a query parser. The purpose of the query parser is to
transform a complex expression into a form that could easily be processed by an engine

14

Client Query Parser Expression
Evaluator

Sensor Filter

CBOR
Encoder

CoAP Block
Writer

POST query

Figure 2.1: Request Handling For /cbor/ URI

that is only capable of doing elementary operations with only two operands and a single
operator, i.e. Operand1 operator Operand2 = Result.
In the example case where the client POSTs expression 1.1, the job of the query parser is to
lay it down into the following sequence of operations:

1. Evaluate room<5

2. Evaluate floor=3

3. AND the results of 1 and 2.
4. Evaluate floor=11

5. AND the results of 1 and 4.
6. OR the results of 3 and 5.
7. Evaluate gain<2.1

8. AND the results of 6 and 7.
9. Evaluate room=1

10. Evaluate gain>3.3

11. AND the results of 9 and 10.
12. OR the results of 8 and 11.
13. Return the result of 12.

The rearranged expression on the basis of the above sequence is shown here.

room<5 floor=3 & room<5 floor=11 & | gain<2.1 & room=1 gain>3.3 & | (2.1)

To process expression 2.1 each sub-expression (starting from the left), like room<5 or
gain>3.3, is evaluated into a result. The sub-expression is then replaced with its evaluated
result. This is continued until an operator appears in the sequence. When an operator
appears, the corresponding operation is performed on the last two results, and then whole
(Operand1 Operand2 operator) trio is replaced with the operation’s result. The process is
continued until the last operator in the expression, eventually reducing the whole expression
into a single result.

15

Such an expression, where the operator appears after the two operands is called “Post-
fix notation” [19], as opposed to “Infix notation” where the operator lies between the two
operands. Postfix notations are much easier to be processed by a simple computing en-
gine because, while an infix notation requires parentheses to describe operator precedence,
postfix notations do not need parentheses. For example, an infix expression “(3 + 4) *
5” is described in its postfix notation counterpart as “3 4 + 5 *”. One such algorithm
that computers use to transform these complex infix notations to simpler postfix notation
is called Shunting-Yard algorithm [20]. The query parser in the implementation uses a
modified form of the algorithm where the operands are sets instead of simple integers.
The “operands” in the expression 1.1 are not simple numbers. Instead, the result of a sub-
expression, like gain<2.1, is a set like {sensor13, sensor22, sensor34}. Consequently,
the operations OR and AND translate to Set-Union and Set-Intersection respectively. Termi-
nal output from this block in one of the test runs is shown in 2.1.

(((room <5&floor=3)|(room <5&floor=11))&gain <2.1)|(room=1&gain >3.3) stack built with 13
elements

0 1 & 2 3 & | 4 & 5 6 & |
0: room<5
1: floor=3
2: room<5
3: floor=11
4: gain <2.1
5: room=1
6: gain >3.3

Listing 2.1: Stdout From Query Parser

Sensor Filter

The input to this block is a sub-expression like gain<2.1, and the output from this block
is a set of sensors that fulfil the criteria. Terminal output from this block in one of the test
runs is shown in 2.2.

room<5 has 218 matches
floor=3 has 56 matches
room<5 has 218 matches
floor=11 has 76 matches
gain <2.1 has 454 matches
room=1 has 42 matches
gain >3.3 has 341 matches

Listing 2.2: Stdout From Sensor Filter

The set of filtered sensors is represented by a bitfield of 64 bits, where each bit represents
a sensor. If a bit is set, the corresponding sensor is considered to have matched the sub-
expression criteria. Non-matching sensors have their corresponding bits set to 0. As an
example, imagine there are 73 sensors in total. A 64-bit bitfield can only accommodate 64
sensors, so we’ll need another 64-bit bitfield to represent the remaining 9 sensors. Figure 2.2
shows how a resultant filtered set looks like:
Although these two bitfields could accommodate 128 sensors, having only a maximum of 73

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1st bitfield

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 1 0 1 1 x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2nd bitfield

Figure 2.2: A Set of Sensors Returned By Sensor Filter

sensors in the system, the rest of the bits will be unused. If the number of sensors had been
over 128, 3 bitfields would have been required. In general, the number of 64-bit bitfields,
NB, required for NS number of sensors is:

𝑁𝐵 = ⌈𝑁𝑆
64 ⌉ (2.2)

There are two major advantages of using bitfields instead of ordinary integer arrays. The
first being the better memory space efficiency. Instead of wasting 73 bytes for 73 sensors,
assuming the smallest integer is 1 byte (8-bit) long, only 16 bytes are needed by using
bitfields. The other advantage will be discussed shortly.

Expression Evaluator

The input to this block is a “stack”, like 2.1, that was generated by the query parser
previously. This block also forwards the sub-expressions to the “Sensor Filter” block. The
sensor filter block returns the results in the form of an array of 64-bit long bitfields, as
discussed in Section 2.1.1. Finally, this block performs the union and intersection operations
on the returned sets.
As mentioned earlier, there’s more to the usage of bitfields over ordinary arrays than simply
memory space efficiency. The bitfields, being 64-bit integers, are extremely easy to perform
bitwise operations on. The set operations union and intersection simply translate to bitwise-
or and bitwise-and in a programming language. The bitwise operations are done on two
arrays of bitfields with a one-to-one correspondence.
After performing all of the set operations in the stack, the resultant bitfield array describes
the sensors that match query 1.1.

CBOR Encoder

The resulting bitfield from the “Expression Evaluator” block only contains the flags rep-
resenting the sensors, not the actual sensors data itself. Some methodology is needed to
package all sensors into a data structure that can be returned in a CoAP response, and later
be easily parsed by the client. This block needs to be able to return an array of sensors,
with all their attribute names and values into one big hierarchical format.
The process of transforming a data structure from a computer program’s memory into some

17

0x7E00 0000 "unit\0"

0x7E00 0005 "Amps\0"

0x7E00 000A "room\0"

0x7E00 0010 13

0x7E00 0014 "floor\0"

0x7E00 001A 8

0x7E00 001E "gain\0"

0x7E00 0024 3.47

a) Sensor Layout in Memory

{
"unit": "Amps",
"room": 13,
"floor": 8,
"gain": 3.47

}

b) JSON Encoded Sensor

Figure 2.3: Serializing Sensor Data

form for later processing is called serialization. Figure 2.3 shows a sensor being serialized
into the JSON.
JSON is probably the most commonly used serialization format in the web ecosystem. It
is human-readable, can be hand written, has extensive software library support for encod-
ing/parsing, and can represent any kind of structural hierarchy. However, these advantages
come at the cost of verbosity. Each character in the JSON encoding takes up a whole byte.
For example, the value of room attribute, i.e. 13, is represented using two bytes: one byte
for 1 and one byte for 3. This value could have easily fit into a single byte if JSON could
represent binary values, but it can’t.
CBOR is a serialization format that fits perfectly for the use case scenario. CBOR allows
for packaging hierarchical data, e.g. array of arrays of maps, into a representation that
has very low encoding overhead, requires minimal code for encoding and decoding, and
fully supports binary data. The binary representations used by CBOR are extremely small,
resulting in much smaller payloads as compared to JSON. Even when compared to other
binary serialization formats, CBOR has much shorter encodings. Shown in Listing 2.3 is
the same sensor from Figure 2.3, this time in CBOR encoding:

A4 64 75 6E 69 74 64 41 6D 70 73 64 72 6F 6F 6D 0D 65 66 6C 6F 6F 72 08 64 67 61 69 6E

18

FB 40 0B C2 8F 5C 28 F5 C3

Listing 2.3: CBOR Encoding of a Sensor

The byte count for CBOR encoding is 38 bytes, as compared to JSON encoding’s 47 bytes.
The difference of almost 10 bytes per sensor increases multiplicatively with a high number
of sensors. Another thing to notice in the CBOR packet is that the gain attribute’s value
is a double-precision float value. That means even if the value had multiple digits after
the decimal point, e.g. 3.47123123, it would still have resulted in the same packet size,
whereas in JSON it would have taken additional 6 bytes.
There are a lot of CBOR software libraries to choose from. The proposed implementation
uses TinyCBOR (https://github.com/intel/tinycbor) due to its small code size and an easy
to use C API.
CBOR allows creation of “indefinite length arrays”, which is extremely useful when the
total number of items in an array are unknown at the time of array creation/initialization.
The input to “CBOR Encoder” block is the bitfield generated by “Expression Evaluator”
block. The “CBOR Encoder” block could count the number of bits that are set to 1 to
find out the required size of the array. But that would’ve resulted in two passes over the
bitfield: one for counting bits, and one for using bits to put respective sensors into the
array. Having the option to declare an array of indefinite length allows us to add sensors
to it as the bitfield is being passed over the first time.
The final output of this block is CBOR encoded array of sensor structures with their at-
tributes names and values.

CoAP Block Writer

CoAP imposes a limit on the PDU size of messages. According to [21] the reasons for this
limit are as follows:

• To fit a message in a single UDP packet.
• To avoid IP fragmentation that is caused by breaking down a large message into

smaller ones.
• To avoid adaptation-layer fragmentation for 6LoWPAN.

The output from the CBOR Encoder block could get large, if the filtered array contains
many sensors. If the encoded packet gets larger than the allowed limit, it will have to be
broken down into pieces and transmitted in several messages piece by piece. CoAP allows
this by using Block-Wise Transfers [21].
The CoAP Block Writer block manages large-body payloads in the following fashion:

1. Wait for request.
2. Check for Block2 option in the request header.
3. If there is no Block2 option value go to the next step. If there is, set N equal to

Block2 value and go to step 5.
4. Initialize block and set N=0.

19

Client
Sensor

Summary Sensor DB

CBOR
Encoder

/GET

Figure 2.4: Request Handling For /cbor/attr URI

5. Send block number N, with Block2 value set to N and Size2 value set to the total size
of the CBOR packet.

6. Go to step 1.

It is the job of the CoAP client to appropriately set Block2 value with its next request
whenever it sees Block2 with the M bit set in the request header. It can also check the total
size of the CBOR packet through Size2 option of the response.

2.1.2 Architecture of /cbor/attr

Imagine a scenario where the technician from the company that installed the sensors is
called for routine examination of the sensors. Now because the building owners are free
to change the sensors configuration on their own, i.e. add new sensors, remove existing
sensors, or change the location of sensors, the tech doesn’t have the latest information on
the building’s state. It would be extremely helpful for him if he could get a summary of
currently operational sensors’ types and locations.
This URI is more of a utility than a core functional unit. The objective of this URI is
to aid the user in creating informed queries. This URI presents a summary of all sensor
attributes, which enables the user to see all possible values the attributes can have. It also
informs if the attributes are read-only values or read-write values.
Figure 2.4 shows the birds-eye view of the second URI (/cbor/attr). The details of each
block will follow afterwards.

Sensor DB

This block hosts all of the sensor data in its entirety. It is just a memory store where each
sensor’s latest unit, room, floor and gain value is available. For the sake of simplicity
we’ll assume that the stored data is up-to-date, even though it is statically defined and
compiled in the implementation’s source code.
In the proposed implementation a random sensor database is generated using the python
script A.1. The script generates a C source file and a header file. The number of sensors to
be generated is given as an argument to the script. 1000 sensors were generated with the
following configuration:

• 28 unit types.

20

root

unit

floor

room

gain

S Hz Wb A

10 4 8 9 11

4 11 22 25

1.67 4.92

Figure 2.5: Depiction of Sensor Summary as Linked List of Linked Lists

• 15 floor levels.
• 25 rooms per floor.
• Gain values from 1.0 to 5.0.

Sensor Summary

This is the block where the sensor data is summarized and stored. The data structure is
in the form of a linked list of linked lists. Shown in Table 2.1 is an example database of 5
sensors in the Sensor DB block.

Unit Floor Room Gain
S 10 4 4.92

Hz 4 11 4.05
S 8 22 4.02

Wb 9 4 1.67
A 11 25 2.31

Table 2.1: Sensor DB Contents

The purpose of the data structure is to store only unique attribute values, preventing
duplicates. Figure 2.5 shows the structure for the sensors from Table 2.1.
The main branch of the structure lists the attribute names. Each node then has a sub-
branch that lists unique values for that particular attribute. Looking carefully, it can been
seen that there are only 4 nodes in the unit sub-branch. This is because the unit type S
appears twice in the sensor DB, but is only included once in linked list. Similarly, room

21

value 4 is included only once, resulting in 4 nodes.
The gain attribute, being a floating point value, is treated differently than string and
numerical attributes. The data structure only stores the minimum and maximum values
for floating point attributes. Such attributes have very distinct values for each sensor, and
storing each value in the linked list will make it very large which defeats the purpose of a
summary.
This list is generated only once, and only changes when anything in the sensor database
changes.

CBOR Encoder

This block works similarly as the “CBOR Encoder” of the first URI as explained in Sec-
tion 2.1.1, i.e. it converts a data structure from program’s memory into a CBOR encoded
packet. The JSON equivalent of the data structure of Figure 2.5 is show in Listing 2.4.
The output of this block is similar, but in CBOR instead of JSON.

{
"unit": {

"wr": false ,
"type": "str",
"vals": ["S","Hz","Wb","A"]

},
"floor": {

"wr": false ,
"type": "int",
"vals": [10,4,8,9,11]

},
"room": {

"wr": false ,
"type": "int",
"vals": [4,11,22,25]

},
"gain": {

"wr": true,
"type": "float",
"vals": [1.67,4.92]

}
}

Listing 2.4: Sensor Summary in JSON

2.1.3 URI response handling

As is apparent at this point that the output from the two URIs is a binary CBOR encoded
packet which needs to be decoded at the UI (CoAP client) end. The library that used to
encode binary data into CBOR at the server end, i.e. TinyCBOR, has all the functions to
decode CBOR packets back to binary data as well.
The client is passed raw CBOR packet through its standard input, or stdin in Linux ter-
minology, with the size of the packet as an argument. The client then allocates buffer
for the raw packet, and copies the packet into it. Finally, a simple TinyCBOR function
cbor_value_to_pretty is used to print the decoded data on standard output (stdout).

22

For the configuration with 1000 sensors, as described in section “Sensor DB”, Listing 2.5
shows the raw CBOR packet for /cbor/attr URI:

bf64756e6974bf627772f46474797065637374726476616c739f62487a61
4a626364627372626b67614e626c78614b61416372616462537664646567
43625061626c6d636f686d6156625762624779636d6f6c61546143624271
6146ffff65666c6f6f72bf627772f4647479706563696e746476616c739f
613861366132623130623133623135613761396133613562313161346231
34623132ffff64726f6f6dbf627772f4647479706563696e746476616c73
9f6232326134623233623230613562313362313162313862313561336232
346231396231306232316232356231326138613961366137623137623136
623134ffff646761696ebf627772f5647479706565666c6f61746476616c
739f64312e303364352e3030ffffff

Listing 2.5: Raw CBOR Response From /cbor/attr

The corresponding decoded output at the client end is shown in Listing 2.6:

{
"unit": {

"wr": false ,
"type": "str",
"vals": [

"Hz", "J", "cd", "sr", "kg", "N", "lx", "K", "A", "rad", "Sv", "degC", "Pa",
"lm", "ohm", "V", "Wb", "Gy", "mol", "T", "C", "Bq", "F"

]
},
"floor": {

"wr": false ,
"type": "int",
"vals": [

"8", "6", "2", "10", "13", "15", "7", "9", "3", "5", "11", "4", "14", "12"
]

},
"room": {

"wr": false ,
"type": "int",
"vals": [

"22", "4", "23", "20", "5", "13", "11", "18", "15", "3", "24", "19", "10",
"21", "25", "12", "8", "9", "6", "7", "17", "16", "14"

]
},
"gain": {

"wr": true,
"type": "float",
"vals": [

"1.03",
"5.00"

]
}

}

Listing 2.6: Decoded Response For /cbor/attr

When the URI /cbor/ is called with the query expression 1.1, the raw CBOR packet
returned is shown in Listing 2.7:

9fa464756e6974614865666c6f6f720364726f6f6d01646761696efa4096
147ba464756e6974636f686d65666c6f6f720e64726f6f6d01646761696e
fa4081eb85a464756e69746065666c6f6f720b64726f6f6d02646761696e
fa3fd5c28fa464756e6974615465666c6f6f720264726f6f6d0164676169
6efa40847ae1a464756e6974615465666c6f6f720364726f6f6d01646761

23

696efa3f8ccccda464756e69746372616465666c6f6f720364726f6f6d01
646761696efa408f5c29a464756e6974616d65666c6f6f720264726f6f6d
01646761696efa4077ae14a464756e69746065666c6f6f720264726f6f6d
01646761696efa407147aea464756e6974614365666c6f6f720764726f6f
6d01646761696efa407851eca464756e6974614a65666c6f6f720464726f
6f6d01646761696efa4055c28fa464756e6974617365666c6f6f720b6472
6f6f6d01646761696efa4058f5c3a464756e69746065666c6f6f72036472
6f6f6d03646761696efa3fc147aea464756e697462537665666c6f6f7203
64726f6f6d01646761696efa3f90a3d7a464756e6974614e65666c6f6f72
0864726f6f6d01646761696efa408851eca464756e6974616d65666c6f6f
720a64726f6f6d01646761696efa4059999aa464756e697462576265666c
6f6f720764726f6f6d01646761696efa409f5c29a464756e697461566566
6c6f6f720b64726f6f6d03646761696efa3fb9999aa464756e6974626364
65666c6f6f720c64726f6f6d01646761696efa40900000a464756e697462
477965666c6f6f720364726f6f6d01646761696efa3f8e147ba464756e69
74636f686d65666c6f6f720f64726f6f6d01646761696efa4087ae14a464
756e6974626c6d65666c6f6f720964726f6f6d01646761696efa408eb852
a464756e697462477965666c6f6f720b64726f6f6d04646761696efa4000
a3d7a464756e6974614e65666c6f6f720964726f6f6d01646761696efa40
79999aff

Listing 2.7: Raw CBOR Response From /cbor

And the decoded data at the client end (with gain values shown until 2 decimal places) is
shown in Listing 2.8:

[
{ "unit": "H", "floor": 3, "room": 1, "gain": 4.69 },
{ "unit": "ohm", "floor": 14, "room": 1, "gain": 4.05 },
{ "unit": "T", "floor": 2, "room": 1, "gain": 4.13 },
{ "unit": "T", "floor": 3, "room": 1, "gain": 1.1 },
{ "unit": "rad", "floor": 3, "room": 1, "gain": 4.48 },
{ "unit": "m", "floor": 2, "room": 1, "gain": 3.86 },
{ "unit": "C", "floor": 7, "room": 1, "gain": 3.88 },
{ "unit": "J", "floor": 4, "room": 1, "gain": 3.33 },
{ "unit": "s", "floor": 11, "room": 1, "gain": 3.39 },
{ "unit": "Sv", "floor": 3, "room": 1, "gain": 1.12 },
{ "unit": "N", "floor": 8, "room": 1, "gain": 4.26 },
{ "unit": "m", "floor": 10, "room": 1, "gain": 3.4 },
{ "unit": "Wb", "floor": 7, "room": 1, "gain": 4.98 },
{ "unit": "V", "floor": 11, "room": 3, "gain": 1.45 },
{ "unit": "cd", "floor": 12, "room": 1, "gain": 4.5 },
{ "unit": "Gy", "floor": 3, "room": 1, "gain": 1.11 },
{ "unit": "ohm", "floor": 15, "room": 1, "gain": 4.23 },
{ "unit": "lm", "floor": 9, "room": 1, "gain": 4.46 },
{ "unit": "Gy", "floor": 11, "room": 4, "gain": 2 },
{ "unit": "N", "floor": 9, "room": 1, "gain": 3.9 }

]

Listing 2.8: Decoded Response from /cbor/

2.2 Experiments: Correctness

This section documents the experimentation that will be used to validate the usefulness
of the proposed resource discovery model. In these experiments, the model is expected to
serve discovery results based on complex query expressions with 100% correctness. In other
words, the sensors in the returned array are expected to fulfil all the criteria described in
the query expression. Furthermore, the returned sensor array is expected to contain all the
sensors that fit the query criteria.

24

A set of three experiments was done for testing the proposed implementation under different
sensor configurations. The following steps are taken for each experiment.

1. Generate a new sensor configuration, using script A.1, for 100 sensors.
2. Run the following queries:

a) Show all sensors that are between floors 5 and 10 (5 and 10 included) and are in
room 7 or 8, or all the sensors that are below floor 5 and are in room 1 or 3, or
all the sensors that are above floor 10 and are in room 9. The query expression
for this query is:

((floor >4&floor <11)&(room=7|room=8))|(floor <5&(room=1|room=3))|(floor
>10&room=9)

b) Show all the sensors that are on the first 8 floors with gain either smaller than
1.5 or greater than 3.5, or all the sensors that are in room 10 of first 8 floors
with gain between 1.5 and 3.5. The query expression for this query is:

floor <9&((gain <1.5|gain >3.5)|(room=10&(gain >1.5&gain <3.5)))

3. Verify that all the sensors returned fulfil the criteria, and mark the ones that don’t.
Instead of actual CBOR binary packets, the results for both queries for all three experiments
are listed below in JSON for convenience.

2.2.1 Experiment 1

Test Query 1

1 [
2 {"unit": "Gy", "floor": 6, "room": 8, "gain": 1.12},
3 {"unit": "sr", "floor": 13, "room": 9, "gain": 3.84},
4 {"unit": "Hz", "floor": 11, "room": 9, "gain": 1.09},
5 {"unit": "C", "floor": 1, "room": 1, "gain": 2.06},
6 {"unit": "Gy", "floor": 5, "room": 7, "gain": 2.29},
7 {"unit": "V", "floor": 10, "room": 7, "gain": 3.40},
8 {"unit": "lm", "floor": 8, "room": 7, "gain": 2.25}
9]

Test Query 2

1 [
2 {"unit": "S", "floor": 1, "room": 2, "gain": 4.78},
3 {"unit": "s", "floor": 4, "room": 23, "gain": 4.84},
4 {"unit": "Gy", "floor": 6, "room": 8, "gain": 1.12},
5 {"unit": "H", "floor": 3, "room": 12, "gain": 4.80},
6 {"unit": "Pa", "floor": 5, "room": 2, "gain": 4.98},
7 {"unit": "Wb", "floor": 3, "room": 5, "gain": 1.04},
8 {"unit": "Bq", "floor": 1, "room": 17, "gain": 3.57},
9 {"unit": "J", "floor": 1, "room": 12, "gain": 4.21},

10 {"unit": "T", "floor": 6, "room": 9, "gain": 1.04},
11 {"unit": "W", "floor": 5, "room": 1, "gain": 4.13},

25

12 {"unit": "Sv", "floor": 3, "room": 5, "gain": 3.73},
13 {"unit": "Hz", "floor": 4, "room": 23, "gain": 4.30},
14 {"unit": "lm", "floor": 7, "room": 10, "gain": 2.98},
15 {"unit": "cd", "floor": 8, "room": 12, "gain": 3.72},
16 {"unit": "Hz", "floor": 3, "room": 11, "gain": 4.59},
17 {"unit": "mol", "floor": 4, "room": 14, "gain": 4.23},
18 {"unit": "Pa", "floor": 7, "room": 20, "gain": 4.11},
19 {"unit": "Gy", "floor": 8, "room": 2, "gain": 3.70},
20 {"unit": "ohm", "floor": 3, "room": 25, "gain": 4.80},
21 {"unit": "mol", "floor": 4, "room": 25, "gain": 4.96},
22 {"unit": "s", "floor": 8, "room": 16, "gain": 3.80},
23 {"unit": "T", "floor": 2, "room": 13, "gain": 4.32},
24 {"unit": "cd", "floor": 2, "room": 2, "gain": 3.96},
25 {"unit": "m", "floor": 3, "room": 21, "gain": 4.25},
26 {"unit": "sr", "floor": 5, "room": 19, "gain": 1.05},
27 {"unit": "rad", "floor": 5, "room": 18, "gain": 4.44},
28 {"unit": "C", "floor": 3, "room": 7, "gain": 1.16},
29 {"unit": "T", "floor": 3, "room": 4, "gain": 4.28},
30 {"unit": "s", "floor": 6, "room": 19, "gain": 3.90},
31 {"unit": "K", "floor": 2, "room": 4, "gain": 4.94},
32 {"unit": "Pa", "floor": 2, "room": 14, "gain": 3.81}
33]

2.2.2 Experiment 2

Test Query 1

1 [
2 {"unit": "s", "floor": 2, "room": 3, "gain": 2.33},
3 {"unit": "m", "floor": 14, "room": 9, "gain": 4.65},
4 {"unit": "C", "floor": 3, "room": 1, "gain": 4.48},
5 {"unit": "rad", "floor": 12, "room": 9, "gain": 1.30},
6 {"unit": "H", "floor": 10, "room": 8, "gain": 3.28},
7 {"unit": "ohm", "floor": 8, "room": 7, "gain": 3.95}
8]

Test Query 2

1 [
2 {"unit": "Wb", "floor": 8, "room": 17, "gain": 4.78},
3 {"unit": "rad", "floor": 7, "room": 15, "gain": 1.42},
4 {"unit": "A", "floor": 3, "room": 5, "gain": 3.65},
5 {"unit": "lm", "floor": 8, "room": 14, "gain": 3.89},
6 {"unit": "", "floor": 4, "room": 22, "gain": 1.11},
7 {"unit": "Gy", "floor": 6, "room": 9, "gain": 4.34},
8 {"unit": "sr", "floor": 6, "room": 18, "gain": 4.80},
9 {"unit": "F", "floor": 5, "room": 6, "gain": 4},

10 {"unit": "C", "floor": 3, "room": 1, "gain": 4.48},
11 {"unit": "C", "floor": 7, "room": 22, "gain": 4.07},
12 {"unit": "", "floor": 8, "room": 21, "gain": 1.34},
13 {"unit": "H", "floor": 6, "room": 21, "gain": 3.67},
14 {"unit": "Pa", "floor": 6, "room": 9, "gain": 1.27},
15 {"unit": "S", "floor": 2, "room": 23, "gain": 4.67},
16 {"unit": "S", "floor": 5, "room": 1, "gain": 4.86},
17 {"unit": "Wb", "floor": 5, "room": 21, "gain": 4.88},
18 {"unit": "cd", "floor": 5, "room": 23, "gain": 4.61},
19 {"unit": "V", "floor": 4, "room": 17, "gain": 1.32},
20 {"unit": "kg", "floor": 2, "room": 4, "gain": 4.48},

26

21 {"unit": "cd", "floor": 8, "room": 20, "gain": 1.37},
22 {"unit": "Bq", "floor": 8, "room": 15, "gain": 3.83},
23 {"unit": "ohm", "floor": 8, "room": 7, "gain": 3.95}
24]

2.2.3 Experiment 3

Test Query 1

1 [
2 {"unit": "V", "floor": 4, "room": 3, "gain": 2.23},
3 {"unit": "ohm", "floor": 11, "room": 9, "gain": 3.59},
4 {"unit": "F", "floor": 10, "room": 7, "gain": 1.29},
5 {"unit": "lm", "floor": 4, "room": 3, "gain": 3.20},
6 {"unit": "F", "floor": 9, "room": 8, "gain": 3.41}
7]

Test Query 2

1 [
2 {"unit": "S", "floor": 3, "room": 7, "gain": 1.45},
3 {"unit": "Wb", "floor": 7, "room": 1, "gain": 4.21},
4 {"unit": "cd", "floor": 5, "room": 10, "gain": 4.51},
5 {"unit": "T", "floor": 7, "room": 4, "gain": 4.94},
6 {"unit": "rad", "floor": 8, "room": 11, "gain": 4.44},
7 {"unit": "J", "floor": 5, "room": 11, "gain": 3.83},
8 {"unit": "C", "floor": 3, "room": 25, "gain": 4.61},
9 {"unit": "Sv", "floor": 2, "room": 2, "gain": 3.95},

10 {"unit": "", "floor": 3, "room": 15, "gain": 1.42},
11 {"unit": "K", "floor": 1, "room": 16, "gain": 4.38},
12 {"unit": "C", "floor": 4, "room": 23, "gain": 3.84},
13 {"unit": "C", "floor": 3, "room": 9, "gain": 4.19},
14 {"unit": "W", "floor": 8, "room": 15, "gain": 3.61},
15 {"unit": "A", "floor": 1, "room": 9, "gain": 1.25},
16 {"unit": "Gy", "floor": 5, "room": 11, "gain": 3.60},
17 {"unit": "F", "floor": 3, "room": 20, "gain": 4.28},
18 {"unit": "F", "floor": 5, "room": 25, "gain": 4.32},
19 {"unit": "Sv", "floor": 8, "room": 12, "gain": 1.28},
20 {"unit": "V", "floor": 7, "room": 3, "gain": 4.98},
21 {"unit": "H", "floor": 8, "room": 24, "gain": 1.20},
22 {"unit": "Sv", "floor": 1, "room": 16, "gain": 1.40}]

2.3 Experiments: Performance

Another set of experiments was done for gauging the new implementation’s performance
statistics. The objective was to visualize how the response time of the CoAP server is
affected by increasing number of sensors, and also by increasing the complexity of the
query expression. For these experiments the server was deployed in a machine in Oregon
USA, and the client machine was in Braunschweig Germany. For each performance statistic
100 measurements were taken. Appendix A.4 lists the script primarily used to capture the
measurements.

27

2.3.1 Experiment 4

The following steps were taken for this experiment. N ranges from 10 to 10,000.
1. Generate N number of sensors for the configuration.
2. Run query from Listing 2b.
3. Measure response time and the total size of the response.
4. Increase N, and go to step 1.

2.3.2 Experiment 5

The following steps were taken for this experiment. The server was forced to respond with
a fixed size response of 4 bytes for each query. N ranges from 50,000 to 1,000,000.

1. Generate N number of sensors for the configuration.
2. Run query from Listing 2b.
3. Measure response time.
4. Increase N, and go to step 1.

2.3.3 Experiment 6

The following steps were taken for this experiment. The number of total sensors was kept
at 1,000,000. The server was forced to respond with a fixed size response of bytes for each
query.

1. Run a query expression of a specific complexity.
2. Measure response time.
3. Change query expression with a greater complexity, and go to step 1.

The following query expressions were evaluated:
1. floor<9

2. gain<1.5|gain>3.5

3. gain>1.5&gain<3.5

4. Full expression from Listing 2b

2.3.4 Experiment 7

For sensor configurations of 10 to 100,000 sensors, the query expression gain>0.5 was used
to target 92% of the resources1. Responses from the following server types were captured:

1. Standard CoAP server returning JSON response
2. Proposed implementation returning JSON response
3. Proposed implementation returning CBOR response

1The gain attribute ranges from 0.1 to 5.0, distributed uniformly.

CHAPTER 3

Thesis Outcome

In Section 1.1 a use case scenario was discussed. The use case put forward several require-
ments, or specifications, that the standard CoAP resource discovery mechanism was unable
to satisfy. The resource discovery methodology proposed in this thesis is able to discover
resources by their specific attribute values. This is especially useful in scenarios where the
resources have arbitrary attributes, and are not easily defined using standard / popular
interfaces and resource types such as described by Internet Assigned Numbers Authority
(IANA) [22]. The proposed methodology allows CoAP client nodes to tailor the discovery
criteria in an expressive way through the usage of logical comparison operators, which is
impossible to do in standard discovery procedure.
In Chapter 2 it was discussed that it is still possible to do attribute-level filtering using
standard discovery procedure, but how it comes at a heavy cost of data overheads and
power wastage. The objectives of the proposed methodology is to eliminate, or at the very
least minimize, those costs, all while catering to the requirements of the use case scenario.
As a summary, the following are the objectives the proposed methodology aims for:

• Resource discovery using attribute-level filtering.
• Reduction in number of data transactions.
• Reduction in size of data transactions.
• Reduction in radio power consumption.
• Reduction in processing cost.

To work towards the listed objectives, the proposed methodology defines two server-side
URIs. These URIs can be used to discover resources using complex query expressions that
target the resources’ attribute values. These URIs can be used by standard CoAP clients
after an addition of CBOR decoding layer. The use case describes sensors that have only
four attributes, including attributes with string and floating point values. However, the
proposed implementation is designed to work with any number of attributes.

30

3.1 Evaluation

In Chapter 2 it was shown that server-side filtering is more scalable than client-side filtering.
It was was argued that if server is able to serve the requested queries with correct results,
all of the above stated objectives will be delivered. The purpose of this section is to eval-
uate if the server was able to accurately return requested data based on experimentation
documented in Section 2.2.
The results of the experiments are listed in JSON for ease of processing using common
tools. For example, listings 2.2.1 and 2.2.1 show the results for experiment 1 for the two
test queries mentioned at 2a and 2b respectively. Similarly, the sensor configuration used in
experiment 1 is listed, again in JSON, at A.2. For verification, a Javascript snippet A.3 was
written to import sensor configuration A.2 and run the test queries on it. The results from
Javascript snippet were then matched with the results from listings 2.2.1 and 2.2.1. This
snippet was run in a Node.js [23] environment. The following is the output of the snippet:

1 Test Query 1 Results
2 { unit: 'Gy', floor: 6, room: 8, gain: 1.12 }
3 { unit: 'sr', floor: 13, room: 9, gain: 3.84 }
4 { unit: 'Hz', floor: 11, room: 9, gain: 1.09 }
5 { unit: 'C', floor: 1, room: 1, gain: 2.06 }
6 { unit: 'Gy', floor: 5, room: 7, gain: 2.29 }
7 { unit: 'V', floor: 10, room: 7, gain: 3.4 }
8 { unit: 'lm', floor: 8, room: 7, gain: 2.25 }
9 Test Query 2 Results

10 { unit: 'S', floor: 1, room: 2, gain: 4.78 }
11 { unit: 's', floor: 4, room: 23, gain: 4.84 }
12 { unit: 'Gy', floor: 6, room: 8, gain: 1.12 }
13 { unit: 'H', floor: 3, room: 12, gain: 4.8 }
14 { unit: 'Pa', floor: 5, room: 2, gain: 4.98 }
15 { unit: 'Wb', floor: 3, room: 5, gain: 1.04 }
16 { unit: 'Bq', floor: 1, room: 17, gain: 3.57 }
17 { unit: 'J', floor: 1, room: 12, gain: 4.21 }
18 { unit: 'T', floor: 6, room: 9, gain: 1.04 }
19 { unit: 'W', floor: 5, room: 1, gain: 4.13 }
20 { unit: 'Sv', floor: 3, room: 5, gain: 3.73 }
21 { unit: 'Hz', floor: 4, room: 23, gain: 4.3 }
22 { unit: 'lm', floor: 7, room: 10, gain: 2.98 }
23 { unit: 'cd', floor: 8, room: 12, gain: 3.72 }
24 { unit: 'Hz', floor: 3, room: 11, gain: 4.59 }
25 { unit: 'mol', floor: 4, room: 14, gain: 4.23 }
26 { unit: 'Pa', floor: 7, room: 20, gain: 4.11 }
27 { unit: 'Gy', floor: 8, room: 2, gain: 3.7 }
28 { unit: 'ohm', floor: 3, room: 25, gain: 4.8 }
29 { unit: 'mol', floor: 4, room: 25, gain: 4.96 }
30 { unit: 's', floor: 8, room: 16, gain: 3.8 }
31 { unit: 'T', floor: 2, room: 13, gain: 4.32 }
32 { unit: 'cd', floor: 2, room: 2, gain: 3.96 }
33 { unit: 'm', floor: 3, room: 21, gain: 4.25 }
34 { unit: 'sr', floor: 5, room: 19, gain: 1.05 }
35 { unit: 'rad', floor: 5, room: 18, gain: 4.44 }
36 { unit: 'C', floor: 3, room: 7, gain: 1.16 }
37 { unit: 'T', floor: 3, room: 4, gain: 4.28 }
38 { unit: 's', floor: 6, room: 19, gain: 3.9 }
39 { unit: 'K', floor: 2, room: 4, gain: 4.94 }
40 { unit: 'Pa', floor: 2, room: 14, gain: 3.81 }

The output matches completely with the experiments’ results. This shows that all of the
returned sensors in results 2.2.1 and 2.2.1 fulfil the criteria of the test query expressions. It

31

10 10
0

25
0

50
0

75
0

10
00

50
00

10
00

0

1

5

10

15

Number of Sensors

R
es

po
ns

e
T

im
e

(s
)

Figure 3.1: Response Time for Filtered Data versus Number of Sensors

also shows that all sensors fulfilling the criteria are returned.
Experimentation done in Section 2.3 showed that the implementation scales better than
the standard CoAP discovery in every scenario.The results for the experiment performed
in Section 2.3.1 is shown in Figure 3.1 as a box plot. The response time scales linearly with
the number of sensors. Increasing number of sensors results in more filtered sensors per
query. This in turn increases the total size of data to be returned per query. Figure 3.2
shows number of bytes returned for each configuration with a different number of sensors
as a log-log plot.
In order to better visualize server’s performance degradation with increasing number of
sensors, it is necessary to normalize the data with the number of response packets returned.
The maximum packet size was set to 1024 bytes for the server. Figure 3.3 shows response
times for 100 packets with increasing number of total sensors as a box plot. Server’s
response time in terms of pure processing period stays constant for a realistic1 number of
total sensors.
The experiment done in Section 2.3.1 showed that the server’s performance was not hindered
as the number of sensors was increased from 10 to 10,000. The objective of the experiment
performed in Section 2.3.2 was to verify if the results from Section 2.3.1 hold true for very
large number of sensors. To eliminate the response time variations due to network related
variables, i.e. response size, the server was modified to sent a fixed 4 character response for
each configuration. The results are shown in Figure 3.4. It can be seen that for very large
number of sensors, the proposed server’s response time starts to increase slightly.

1Realistic in terms of server machine’s computing power. The machine used in the experiments was a
single-core 3.0GHz processor, 1GB RAM Amazon Web Services (AWS) t2.micro Virtual Private Server

32

101 102 103 104

102

103

104

105

Number of Sensors

R
es

po
ns

e
Si

ze
(b

yt
es

)

Figure 3.2: Size of Response versus Number of Sensors

The objective of the experiment performed in Section 2.3.3 was to measure server’s perfor-
mance degradation with increasing complexity of the query expression. The results plotted
in Figure 3.5 show response times for each query. The server’s response time does appear
to increase with the increasing complexity of the query expression.
This experiment done in Section 2.3.4 visualizes the data efficiency of the proposed imple-
mentation. Because the standard CoAP server does not have the filtering capability, it will
simply return all of the sensors in the database. The results shown in Figure 3.6 prove that
the proposed implementation performs much better with CBOR as the encoding scheme.
Responses were nearly half in size as compared to the standard CoAP server. Using CBOR
instead of JSON saved more than 45% in the network traffic.

3.2 Conclusion

In this thesis, a new approach towards CoAP discovery is proposed. It is asserted that the
standard CoAP discovery mechanism proves to be insufficient or even incapable in certain
scenarios. This argument is strengthened by postulating a real world use-case scenario.
It is shown that to effectively fulfil the use-case requirements, some way of filtering the
discovered resources is needed. This filtering mechanism is implemented using fast bit-
wise representations of resources, and a query parsing engine that supports complex query
expressions. The implementation uses CBOR as the encoding scheme which is shown to
be superior to Constrained RESTful Environments (CoRE) Link Format, as well as to
other encoding schemes such as JSON and other binary encodings. The implementation’s
correctness and performance superiority is verified using a number of experiments. The
outcome of this thesis is a discovery model that can be used in real world applications
that need fine-grained resource discovery based on attributes that can have values of types
strings, integers and floating-point numbers.

33

10 10
0

25
0

50
0

75
0

10
00

50
00

10
00

0

0.2

0.3

0.4

Number of Sensors

R
es

po
ns

e
T

im
e

(s
)

Figure 3.3: Normalized Response Time for Filtered Data versus Number of Sensors

3.3 Future Work

The proposed implementation can be improved in a few ways to make it more performant
for capable machines. For instance, machines with more than one cores could be able to
improve response times if the implementation supported parallelism. In expression 2.1,
the sub-expressions room<5, floor=3, floor=11, gain<2.1, room=1 and gain>3.3 can be
evaluated in parallel in different cores without affecting the final result.
Machines with memory to spare could take advantage of a caching layer. Referring back
to expression 2.1, it can be seen that sub-expression room<5 appears twice. A meticulously
designed caching layer that stores results of last N sub-expressions can greatly enhance
response times especially in a system with hundreds of thousands of sensors.
The query parser engine can be improved to support relational operators >= (bigger than
or equal to), <= (smaller than or equal to), and != (not equal to). Furthermore, it could be
useful to support all operators for string attributes.

34

50
K

10
0K

20
0K

50
0K

70
0K

80
0K

90
0K 1M

0.5

1

1.5

2

Number of Sensors

R
es

po
ns

e
T

im
e

(s
)

Figure 3.4: Response Time for A Fixed Response Size versus Number of Sensors

1 2 3 4

1.5

2

2.5

3

3.5

Query Expression

R
es

po
ns

e
T

im
e

(s
)

Figure 3.5: Response Time vs Query Expression

35

103 104 105 106 107

10

100

1000

10000

100000

Standard
JSON
CBOR

Figure 3.6: Response Sizes for Different Server Types

Bibliography

[1] T. Socolofsky and C. Kale. A TCP/IP Tutorial. https://tools.ietf.org/html/
rfc1180. [Online; accessed 14-Feb-2019].

[2] R. Kalin. A Simplified NCP Protocol. https://tools.ietf.org/html/rfc60. [On-
line; accessed 14-Feb-2019].

[3] R. Fielding, J. Gettys, J. Mogul, F. Frystyk, L. Masinter, P. Leach, and T. Berners Lee.
Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/rfc1180.
[Online; accessed 17-Feb-2019].

[4] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7, chapter Representational State Trans-
fer (REST). University of California, Irvine Irvine, USA, 2000.

[5] Jonathan Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Implications
of Historical Trends in the Electrical Efficiency of Computing. IEEE Annals of the
History of Computing, 33(3):46–54, March 2011.

[6] Gordon Bell. Moore’s Law evolved the PC industry; Bell’s Law disrupted it with
players, phones, and tablets: New Platforms, tools, and sevices. Technical report,
January 2014.

[7] J. Postel. User Datagram Protocol. https://tools.ietf.org/html/rfc768. [Online;
accessed 17-Feb-2019].

[8] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol (CoAP).
https://tools.ietf.org/html/rfc7252. [Online; accessed 18-Feb-2019].

[9] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and B. Raymor.
CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. https:
//tools.ietf.org/html/rfc8323. [Online; accessed 18-Feb-2019].

[10] Z. Shelby, M. Koster, C. Bormann, P. van der Stok, and C Amsuess. CoRE
Resource Directory. https://tools.ietf.org/html/draft-ietf-core-resource-
directory-19. [Online; accessed 25-Jan-2019].

[11] Z. Shelby, M. Koster, C. Groves, J. Zhu, and B Silverajan. Reusable Interface Def-
initions for Constrained RESTful Environments. https://tools.ietf.org/html/
draft-ietf-core-interfaces-13. [Online; accessed 25-Jan-2019].

[12] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
A. Kröller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and
R. Richardson. Spitfire: toward a semantic web of things. IEEE Communications

https://tools.ietf.org/html/rfc1180
https://tools.ietf.org/html/rfc1180
https://tools.ietf.org/html/rfc60
https://tools.ietf.org/html/rfc1180
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc8323
https://tools.ietf.org/html/rfc8323
https://tools.ietf.org/html/draft-ietf-core-resource-directory-19
https://tools.ietf.org/html/draft-ietf-core-resource-directory-19
https://tools.ietf.org/html/draft-ietf-core-interfaces-13
https://tools.ietf.org/html/draft-ietf-core-interfaces-13

38 Appendix

Magazine, 49(11):40–48, November 2011.
[13] Perera Charith, Zaslavsky Arkady, Liu Chi Harold, Compton Michael, Christen Pe-

ter, and Georgakopoulos Dimitrios. Sensor search techniques for sensing as a service
architecture for the internet of things. IEEE Sensors Journal, 14, 09 2013.

[14] Michele Ruta, Floriano Scioscia, Agnese Pinto, Filippo Gramegna, Saverio Ieva,
Giuseppe Loseto, and Eugenio Di Sciascio. A coap-based framework for collaborative
sensing in the semantic web of things. Procedia Computer Science, 109:1047 – 1052,
2017. 8th International Conference on Ambient Systems, Networks and Technologies,
ANT-2017 and the 7th International Conference on Sustainable Energy Information
Technology, SEIT 2017, 16-19 May 2017, Madeira, Portugal.

[15] Michele Ruta, Floriano Scioscia, A Pinto, Eugenio Di Sciascio, Filippo Gramegna,
Saverio Ieva, and Giuseppe Loseto. Resource annotation, dissemination and discovery
in the semantic web of things: A coap-based framework. pages 527–534, 08 2013.

[16] Michele Ruta, Floriano Scioscia, Giuseppe Loseto, Filippo Gramegna, A Pinto, Saverio
Ieva, and Eugenio Di Sciascio. A logic-based coap extension for resource discovery in
semantic sensor networks. CEUR Workshop Proceedings, 904:17–32, 01 2012.

[17] Ali Yachir, Badis Djamaa, Kheireddine Zeghouani, Marwen Bellal, and Mohammed
Boudali. Semantic resource discovery with coap in the internet of things. pages 75–82,
01 2017.

[18] M. R. Khaefi and D. Kim. Bloom filter based coap discovery protocols for distributed
resource constrained networks. In 2015 IEEE 13th International Conference on Indus-
trial Informatics (INDIN), pages 448–453, July 2015.

[19] Arthur W. Burks, Don W. Warren, and Jesse B. Wrights. An analysis of a logical
machine using parenthesis-free notation. mathematical tables and other aids to com-
putation, vol. 8 (1954), pp. 53–57. Journal of Symbolic Logic, 20, 1955.

[20] An algol 60 translator for the x1. Annual Review in Automatic Programming, 3:329 –
345, 1963. Annual Review in Automatic Programming.

[21] C. Bormann and Z. Shelby. Block-Wise Transfers in the Constrained Application
Protocol (CoAP). https://tools.ietf.org/html/rfc7959. [Online; accessed 30-
Jan-2019].

[22] Constrained RESTful Environments (CoRE) Parameters. https://www.iana.org/
assignments/core-parameters/core-parameters.xhtml. [Online; accessed 10-Feb-
2019].

[23] About | Node.js. https://nodejs.org/en/about/. [Online; accessed 11-Feb-2019].

https://tools.ietf.org/html/rfc7959
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml
https://www.iana.org/assignments/core-parameters/core-parameters.xhtml
https://nodejs.org/en/about/

Appendix

A.1 gen_sensors.py

1 #!/usr/bin/python
2
3 import sys
4 from random import randint
5 from random import uniform
6
7 nsen = int(sys.argv[1])
8 units = ["m","kg","s","A","K","mol","cd","rad","sr","Hz","N","Pa","J","W",
9 "degC","C","V","ohm","S","F","H","Wb","T","lm","lx","Bq","Gy","Sv"]

10 floors = 15
11 rooms = 25
12 gains = 5.0
13
14 units_len = len(units)
15
16 f = open('server/include/cfg.h','w')
17 f.write('#define NSEN %s\n' % (nsen))
18 f.close()
19
20 f = open('server/src/cfg.c','w')
21
22 f.write('#include "cfg.h"\n')
23 f.write('#include "sensor.h"\n')
24
25 f.write('char *units[NSEN] = {\n')
26 for i in range(nsen):
27 r = randint(0,units_len -1)
28 f.write(' "%s",\n' % (units[r]))
29 f.write('};\n')
30
31 f.write('char *floors[NSEN] = {\n')
32 for i in range(nsen):
33 r = randint(1,floors)
34 f.write(' "%s",\n' % (r))
35 f.write('};\n')
36
37 f.write('char *rooms[NSEN] = {\n')
38 for i in range(nsen):
39 r = randint(1,rooms)
40 f.write(' "%s",\n' % (r))
41 f.write('};\n')
42
43 f.write('char *gains[NSEN] = {\n')
44 for i in range(nsen):
45 r = round(uniform(0.1,gains),2)
46 f.write(' "%s",\n' % (r))

40 Appendix

47 f.write('};\n')
48 f.close();

”Script for generating random sensor database”

A.2 Sensor Configuration

1 [
2 {"unit": "m", "floor": 9, "room": 9, "gain": 4.90},
3 {"unit": "N", "floor": 8, "room": 20, "gain": 3.04},
4 {"unit": "S", "floor": 1, "room": 2, "gain": 4.78},
5 {"unit": "s", "floor": 4, "room": 23, "gain": 4.84},
6 {"unit": "Gy", "floor": 6, "room": 8, "gain": 1.12},
7 {"unit": "Wb", "floor": 13, "room": 6, "gain": 2.28},
8 {"unit": "m", "floor": 15, "room": 18, "gain": 4.65},
9 {"unit": "H", "floor": 3, "room": 12, "gain": 4.80},

10 {"unit": "sr", "floor": 5, "room": 6, "gain": 2.64},
11 {"unit": "Pa", "floor": 4, "room": 9, "gain": 2.50},
12 {"unit": "F", "floor": 15, "room": 18, "gain": 2.18},
13 {"unit": "cd", "floor": 10, "room": 22, "gain": 3.57},
14 {"unit": "Pa", "floor": 5, "room": 2, "gain": 4.98},
15 {"unit": "Gy", "floor": 7, "room": 4, "gain": 2.25},
16 {"unit": "sr", "floor": 13, "room": 9, "gain": 3.84},
17 {"unit": "Wb", "floor": 3, "room": 5, "gain": 1.04},
18 {"unit": "sr", "floor": 11, "room": 6, "gain": 2.22},
19 {"unit": "H", "floor": 8, "room": 24, "gain": 2.17},
20 {"unit": "Bq", "floor": 1, "room": 17, "gain": 3.57},
21 {"unit": "lm", "floor": 2, "room": 6, "gain": 3.36},
22 {"unit": "Gy", "floor": 13, "room": 15, "gain": 1.23},
23 {"unit": "J", "floor": 1, "room": 12, "gain": 4.21},
24 {"unit": "T", "floor": 6, "room": 9, "gain": 1.04},
25 {"unit": "W", "floor": 5, "room": 1, "gain": 4.13},
26 {"unit": "Sv", "floor": 3, "room": 5, "gain": 3.73},
27 {"unit": "Pa", "floor": 13, "room": 13, "gain": 2.36},
28 {"unit": "Hz", "floor": 4, "room": 23, "gain": 4.30},
29 {"unit": "lm", "floor": 7, "room": 10, "gain": 2.98},
30 {"unit": "S", "floor": 2, "room": 24, "gain": 3.18},
31 {"unit": "mol", "floor": 14, "room": 15, "gain": 3.20},
32 {"unit": "cd", "floor": 8, "room": 12, "gain": 3.72},
33 {"unit": "Hz", "floor": 3, "room": 11, "gain": 4.59},
34 {"unit": "Hz", "floor": 11, "room": 9, "gain": 1.09},
35 {"unit": "Gy", "floor": 14, "room": 24, "gain": 1.27},
36 {"unit": "mol", "floor": 8, "room": 9, "gain": 2.15},
37 {"unit": "Gy", "floor": 10, "room": 24, "gain": 2.30},
38 {"unit": "C", "floor": 1, "room": 1, "gain": 2.06},
39 {"unit": "rad", "floor": 12, "room": 17, "gain": 2.5},
40 {"unit": "Gy", "floor": 15, "room": 12, "gain": 4.05},
41 {"unit": "lm", "floor": 4, "room": 17, "gain": 2.81},
42 {"unit": "Bq", "floor": 3, "room": 13, "gain": 2.80},
43 {"unit": "mol", "floor": 4, "room": 14, "gain": 4.23},
44 {"unit": "H", "floor": 14, "room": 12, "gain": 4.76},
45 {"unit": "N", "floor": 8, "room": 15, "gain": 1.72},
46 {"unit": "T", "floor": 5, "room": 2, "gain": 3.04},
47 {"unit": "Pa", "floor": 7, "room": 20, "gain": 4.11},
48 {"unit": "Gy", "floor": 8, "room": 2, "gain": 3.70},
49 {"unit": "kg", "floor": 9, "room": 3, "gain": 2.22},
50 {"unit": "Gy", "floor": 5, "room": 7, "gain": 2.29},
51 {"unit": "lm", "floor": 11, "room": 1, "gain": 2.51},
52 {"unit": "Bq", "floor": 8, "room": 3, "gain": 3.02},
53 {"unit": "ohm", "floor": 3, "room": 25, "gain": 4.80},
54 {"unit": "mol", "floor": 4, "room": 25, "gain": 4.96},
55 {"unit": "s", "floor": 8, "room": 16, "gain": 3.80},

41

56 {"unit": "T", "floor": 2, "room": 13, "gain": 4.32},
57 {"unit": "Wb", "floor": 11, "room": 10, "gain": 3.26},
58 {"unit": "cd", "floor": 2, "room": 2, "gain": 3.96},
59 {"unit": "Pa", "floor": 12, "room": 4, "gain": 3.90},
60 {"unit": "Gy", "floor": 15, "room": 20, "gain": 2.11},
61 {"unit": "m", "floor": 3, "room": 21, "gain": 4.25},
62 {"unit": "sr", "floor": 12, "room": 21, "gain": 1.58},
63 {"unit": "S", "floor": 11, "room": 11, "gain": 3.67},
64 {"unit": "S", "floor": 2, "room": 4, "gain": 1.51},
65 {"unit": "sr", "floor": 5, "room": 19, "gain": 1.05},
66 {"unit": "rad", "floor": 5, "room": 18, "gain": 4.44},
67 {"unit": "C", "floor": 3, "room": 7, "gain": 1.16},
68 {"unit": "kg", "floor": 2, "room": 5, "gain": 3.31},
69 {"unit": "Sv", "floor": 13, "room": 3, "gain": 1.15},
70 {"unit": "Bq", "floor": 10, "room": 18, "gain": 3.99},
71 {"unit": "T", "floor": 3, "room": 4, "gain": 4.28},
72 {"unit": "degC", "floor": 9, "room": 12, "gain": 1.82},
73 {"unit": "A", "floor": 11, "room": 4, "gain": 4.88},
74 {"unit": "V", "floor": 10, "room": 7, "gain": 3.40},
75 {"unit": "Sv", "floor": 14, "room": 4, "gain": 4.05},
76 {"unit": "Wb", "floor": 4, "room": 6, "gain": 1.54},
77 {"unit": "lm", "floor": 8, "room": 7, "gain": 2.25},
78 {"unit": "kg", "floor": 14, "room": 11, "gain": 1.88},
79 {"unit": "Hz", "floor": 12, "room": 11, "gain": 3.71},
80 {"unit": "V", "floor": 2, "room": 24, "gain": 2.45},
81 {"unit": "degC", "floor": 10, "room": 19, "gain": 3.78},
82 {"unit": "H", "floor": 10, "room": 10, "gain": 3.88},
83 {"unit": "N", "floor": 11, "room": 12, "gain": 2.42},
84 {"unit": "kg", "floor": 13, "room": 1, "gain": 2.16},
85 {"unit": "Sv", "floor": 11, "room": 23, "gain": 1.87},
86 {"unit": "Bq", "floor": 14, "room": 1, "gain": 3.65},
87 {"unit": "s", "floor": 6, "room": 19, "gain": 3.90},
88 {"unit": "mol", "floor": 11, "room": 19, "gain": 2.77},
89 {"unit": "N", "floor": 9, "room": 23, "gain": 3.22},
90 {"unit": "lm", "floor": 10, "room": 10, "gain": 3.64},
91 {"unit": "Sv", "floor": 5, "room": 18, "gain": 1.5},
92 {"unit": "K", "floor": 2, "room": 4, "gain": 4.94},
93 {"unit": "m", "floor": 13, "room": 21, "gain": 4.96},
94 {"unit": "s", "floor": 2, "room": 13, "gain": 2.94},
95 {"unit": "kg", "floor": 7, "room": 1, "gain": 2.41},
96 {"unit": "ohm", "floor": 9, "room": 5, "gain": 4.38},
97 {"unit": "A", "floor": 8, "room": 25, "gain": 2.82},
98 {"unit": "rad", "floor": 12, "room": 25, "gain": 3.77},
99 {"unit": "T", "floor": 1, "room": 8, "gain": 2.61},

100 {"unit": "N", "floor": 5, "room": 3, "gain": 3.05},
101 {"unit": "Pa", "floor": 2, "room": 14, "gain": 3.81}
102]

”Experiment 1”

A.3 verify_results.js

1 var fs = require('fs');
2 var cfg = JSON.parse(fs.readFileSync('sen_cfg.json','utf8'));
3
4 function query1(s)
5 {
6 if(
7 ((s.floor >4 && s.floor <11) &&
8 (s.room==7 || s.room==8)) ||
9 (s.floor <5 && (s.room==1 || s.room==3) ||

10 (s.floor >10 && s.room==9))

42 Appendix

11)
12 {
13 return true;
14 }
15 return false;
16 }
17
18 function query2(s)
19 {
20 if(
21 s.floor <9 &&
22 ((s.gain <1.5 || s.gain >3.5) ||
23 (s.room==10 && (s.gain >1.5 && s.gain <3.5)))
24)
25 {
26 return true;
27 }
28 return false;
29 }
30
31 console.log("Test Query 1 Results");
32 cfg.forEach(function(sensor){
33 if(query1(sensor))
34 {
35 console.log(sensor);
36 }
37 });
38
39 console.log("Test Query 2 Results");
40 cfg.forEach(function(sensor)
41 {
42 if(query2(sensor))
43 {
44 console.log(sensor);
45 }
46 });

”Snippet for verifying experiment results”

A.4 benchmark.sh

1 #!/bin/bash
2
3 SERVER=34.220.195.165
4 RUNS=99
5
6 declare -a reals
7
8 echo -n "$1" > req
9 for i in $(seq 1 $RUNS); do

10 out=$(/usr/bin/time coap-client -m post -f req \
11 "coap://$SERVER/.well-known/cbor" 2>&1 > /dev/null)
12 echo -ne "$i/$RUNS"\\r
13 reals[$i]=$(echo "$out" | awk '{ print $1 }')
14 done
15
16 IFS=$'\n' sorted=($(sort <<<"${reals[*]}"))
17 unset IFS
18
19 echo "median = ${sorted[($RUNS+1)/2]}"
20 echo "upper quartile = ${sorted[3*($RUNS+1)/4]}"
21 echo "lower quartile = ${sorted[($RUNS+1)/4]}"

43

22 echo "min = ${sorted[0]}"
23 echo "max = ${sorted[$RUNS -1]}"

”Script for benchmarking server”

I herewith assure that I wrote the present thesis titled Enhanced CoAP resource discovery
- Application layer interfaces and highly targeted query filters independently, that the thesis
has not been partially or fully submitted as graded academic work and that I have used
no other means than the ones indicated. I have indicated all parts of the work in which
sources are used according to their wording or to their meaning.
I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a penalty by the law enforcement agency.

Magdeburg, March 11, 2019
(Jawad Ahmad)

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Rise of World-Wide-Web
	Internet of Things
	CoAP

	Motivation
	Thesis Structure
	Related Work

	Thesis Contribution
	Implementation
	Architecture of /cbor/
	Architecture of /cbor/attr
	URI response handling

	Experiments: Correctness
	Experiment 1
	Experiment 2
	Experiment 3

	Experiments: Performance
	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7

	Thesis Outcome
	Evaluation
	Conclusion
	Future Work

	Bibliography
	Appendix
	gen_sensors.py
	Sensor Configuration
	verify_results.js
	benchmark.sh

