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Abstract

Abstract

Currently, most of the factory and material flow operations in manufacturing industries
are carried out in static factory layouts. Due to the static layout, there is a limitation
in flexibility. Flexibility denotes the ability to change the factory layout to optimize the
production process for different production programmes. In this context, there is a need
for research in the direction of modular, decentralized and distributed process planning for
dynamic factory layouts. One major challenge is the design of an appropriate strategy for
communication between the factory modules and the identification of appropriate commu-
nication technologies. The communication design has two main requirements. First, to
make use of wireless communication for changing the factory structure. Second, the com-
munication strategy should be able to quickly identify the current factory layout and the
interconnection of factory resources.
According to the current state of knowledge, Light Fidelity (Li-Fi) is one of the adaptable
technology to fulfill these requirements. In this thesis, a concept for the integration of
Li-Fi communication in the factory planning laboratory is proposed. The distributed fac-
tory layouts are demonstrated by applying Li-Fi communication. Specific experiments are
conducted to design a robust Li-Fi protocol with a suitable transceiver and reliable com-
munication. RIOT-OS, Arduino-Mega 2560, Li-Fi transceivers and Fischertechink factory
modules are used to build modular factory structures.
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CHAPTER 1

Introduction

Nowadays, due to the static factory layouts in manufacturing industries, the material flow
for producing different products with several varieties is difficult. Transforming the layout
from one layout to another layout is a bottleneck. Consequently, there is considerable scope
for research in decentralized and distributed modular structure in factory layouts. The
main research field is to build stand-alone factory modules with wireless communication
capabilities.
Currently, Radio Frequency (RF) spectrum is used as a wireless communication medium in
Industries. The main limitations of RF are interference, high latency, spectrum deficiency
and identification of the factory layouts. To overcome these limitations, Li-Fi is a preferred
communication technology because of its high bandwidth, speed, immune to interference
from electromagnetic sources and Line of Sight (LOS) communication.

1.1 Motivation

In this era of automation, developing concepts related to Industry 4.0 in logistics and
material flow is necessary. These concepts focus on decentralized, modular and material
handling resources in factory planning. Existing static structure in factory planning lab-
oratory (LogCentre) [1, 2] restricts the flexibility in changing the factory layouts. The
problem with the current static structure, as shown in Figure 1.1 is the constraints of the
possibilities to customize a production process, which is difficult and time-consuming. The
controlling operations are carried out by the central Programmable Logic Controller (PLC).
The increasing complexity in the classical centralized material flow control is impeding the
development of control systems.
On the other hand, the increasing digitization of processes, development and integration of
innovative planning tools leads a path to change the static to dynamic and centralized to
decentralized structures. Another problem with static structure is communication medium,
i.e., hard-wired, because of which there is an increase in cost, workforce and time. The
wireless communications such as RF, Bluetooth, ZigBee, Wireless Fidelity (Wi-Fi), Li-Fi
provide a solution for modular factory structures.
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Figure 1.1: Current Factory Structure [1]

The main goal of the thesis is to implement a wireless communication protocol for dis-
tributed and decentralized factory planning applications. To summarize, the factory plan-
ning laboratory developed in this work shall be an environment to develop cyber-physical
systems, modular, decentralized, controlled production and logistics concepts. It allows the
researchers to develop, evaluate new concepts and technologies related to Industry 4.0.

1.2 Objectives

Based on the aim discussed in the previous paragraph, the objectives are as follows:
• Conceptual model
• Li-Fi protocol design
• Li-Fi transceiver design
• Modelling stand-alone factory modules
• Fabrication of component holders
• RFID setup
• Integration of the designed protocol in factory planning laboratory

Firstly, a conceptual model, as shown in figure 1.2, is designed to get a basic understanding
of the aim of the thesis. For which a master-slave model is referred. In the conceptual
model, the modular structures are formed by the master node. Initially, the RFID reader
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Figure 1.2: Conceptual Model

detects the sink information from the slave 1 and forwards it to the master node. The master
node processes the information, communicates with slave 1 and forwards the information
through different slaves to the destination. Next step is to design the Li-Fi protocol which
has further sub-tasks such as frame format derivation, Manchester encoding and On-Off
Keying (OOK) modulation, which is carried out in RIOT-OS firmware. At this point, the
firmware is ready.
Now transceiver pairs are to be designed for different factory modules. Next step is to
identify the best transceiver pair, finding maximum communication distance and reliability
of the protocol. The Li-Fi transceivers are to be tested with the firmware flashed on Arduino-
Mega 2560. Further, the factory modules redesigned into stand-alone modules. To attach
the hardware components to the module, the component holders are designed and fabricated
using 3D printing technology. Finally, to make the setup ready for evaluation, RFID based
sink selection master node is to be designed. The detailed description of the hardware,
firmware and technical specifications are illustrated in Chapter 3.

1.3 Thesis Structure

The structure of this thesis is illustrated in Figure 1.3.
Chapter 1 gives a brief introduction to the thesis. The motivation and objectives of the
thesis are discussed.
In Chapter 2, the related work regarding current research about Li-Fi communication pro-
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tocols, factory planning laboratory, the theoretical background of communication protocols
and RIOT-OS are discussed.
Chapter 3 describes the software implementation of Li-Fi protocol, design of transceivers,
factory modules, design and fabrication of the component holders using a 3D printer. It also
deals with the experiments performed to check transmission speed, reliability and maximum
communication distance of Li-Fi transceiver.
In Chapter 4, the evaluation of the protocol and integration of the Li-Fi protocol in factory
planning laboratory is discussed.
In Chapter 5, summarizing the thesis and aspects of future work is mentioned.



CHAPTER 2

Related Work

2.1 Theoretical Background

In this section, the theoretical background of factory planning laboratory, architecture and
modulation techniques of Li-Fi protocol, HDLC protocol, Manchester encoding and the
RIOT-OS are described.

2.1.1 Industry 4.0 insights

According to four industrial revolutions so far, the first industrial revolution was the inven-
tion of energy generation methods using steam, water, etc., led to the industrial transfor-
mation with trains and improvisation of manufacturing. The second industrial revolution
was the period where electricity was invented, which enhanced manufacturing with new
inventions, such as the assembly lines. This revolution was directed to high productivity
with some extent of automation. The third industrial revolution was obviously the birth
of the Internet. Computerization, networking, robotics and connectivity, were the signifi-
cant transformation in a way information is handled and shared with far more automation.
Fourth industrial revolution (Industry 4.0) is a shift from the Internet and the client-server
model to ubiquitous mobility with additional accelerators such as advanced robotics and
artificial intelligence. This revolution enables automation and optimization with entirely
new ways that lead to fully automated systems [3].
In general, the primary purpose of Industry 4.0 is the emergence of digital manufacturing,
also named as “smart factory” [3], which means smart networking, mobility, Interoperabil-
ity, flexibility in logistics and supply chain management. The design principles of Industry
4.0 are shown in Figure 2.1. Out of which the main focus of this work is to enhance Interop-
erability, decentralization and modularity. The modularity deals with the replacement and
expansion of the modules and systems as per the changing need, flexibility and dynamic
environment. Interoperability and interconnections mainly focus on standard protocols and
Internet of Things (IoT). The decentralization and autonomous decisions contribute new
innovative ideas in manufacturing and logistics industries [3].
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Figure 2.1: Industry 4.0 design principles [3]

According to Barreto et al., the implementation of Cyber-physical systems (CPS) increase
the overall productivity, flexibility and agility in the supply chains. The CPS and its
components, such as intelligent control systems and embedded software systems, play an
essential role in the evolution of manufacturing [4].

2.1.2 Factory Planning Laboratory

Institute of Logistics and Material flow (ILM) department of Otto von Guericke Univer-
sity, Magdeburg, Germany in cooperation with Fraunhofer Magdeburg initiated the factory
planning laboratory. As per Hofmann et al., the digitized planning and operating systems
replaced with the term “digital factory” [1]. In the context of factory planning and oper-
ations, virtual commissioning placed before the physical commissioning [1]. The principal
element of the laboratory is a modular, changeable plug-and-play conveying system that
built on the idea of the “Flexconveyor” [5]. Modularity extends the flexibility to design and
implement dynamic system structures.
Lang et al., introduced [2] modular plug-and-play conveying systems for distributed factory
structures. Moor et al., [6] implemented the supervisory control for a flexible manufacturing
system(FMS) using discrete event systems.
Currently, in the laboratory, each factory module is equipped with an RFID reader-writer
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Figure 2.2: Layered architecture of Li-Fi [13]

and controlled by an Arduino-Mega 2560 single-board micro-controller. Each module pro-
grammed with a unique ID. The interconnection between the modules and to central bus
system is with RS485 [7].
Mukku et al., [8] proposed Li-Fi communication for industry 4.0 learning laboratory. The
proposed model helps in building modular factory layouts inside the laboratory.
In [9, 10], the RFID-enabled automation in support of factory integration, using RFID
tags that carry Global Identification Code (GIC) information about module identity and
connectivity data. The information on the GIC-tagged part can be directly accessed and
retrieved from the designated host application. This increases flexibility and responsiveness
of the value chains for manufacturing industries [9, 10].
Louw et al., introduced low-cost RFID track and trace system [11], RFID systems comprised
of three components such as the tag or transponder, the reader, and the data processing
subsystem comprising of middle-ware and internal databases. Tags are divided into two
classes, namely active and passive tags. It has shown that using a small amount of data,
for instance, the unique Id of the product achieves high passing speeds of up to 4.0m s−1

with 100 successful readings [12].

2.1.3 Layered Architecture and Modulation Techniques for Li-Fi Communication

IEEE 802.15.7 is the standard for short-range optical wireless communications. This stan-
dard mainly focuses on the physical layer and MAC sublayer of Open Systems Interconnec-
tion (OSI) model [13]. The layered architecture of Li-Fi system is shown in Figure 2.2.

Physical layer: This layer defines the physical configurations of the devices. It specifies the
relationship between the device and the physical medium. The physical layer establishes the
communication between the transmitter and the receiver. The block diagram of the general
physical layer implementation of the Li-Fi system is shown in Figure 2.3. The data frame
received from the MAC sublayer is encoded with line encoding technique (e.g., Manchester
encoding). The encoded data to proceed for modulation(e.g., OOK). Now the data is ready
to transmit. The transmitter can use LED/LD (Laser Diode) for transmission. The data is
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transmitted as a variation of light intensities. At the receiver end, photo detector or LED
is used to receive the data. The receiver synchronizes with the transmitter to establish
communication. Next, the data is processed with demodulation and decode with the same
technique used at the transmitter [13].

MAC layer: The MAC layer provides error checking with Frame Check Sequence (FCS),
addressing and channel access control mechanisms. The data received by the physical layer
is processed by the MAC layer [13]. Tasks performed by the MAC layer are Mobility sup-
port, Dimming support, Visibility support, Security support, Schemes for mitigation of
flickering. MAC layer supports peer-to-peer, broadcast, master-slave and star communica-
tion topologies [15].

Modulation Techniques: Li-Fi systems use the following modulation schemes such as OOK,
Variable Pulse Position Modulation (VPPM), Colour Shift Keying (CSK), Sub-Carrier In-
verse PPM (SCIPPM), SIM-OFDM (Sub-Carrier Index Modulation OFDM) [14]. In OOK,
the LED is not switched off completely in the off state, but the reduction in the level of inten-
sity is performed [16]. OOK modulation does not require prior knowledge of transmitter or
receiver characteristics [13]. The main advantage of using OOK is its easy implementation
and highly responsive with a white LED [16].

2.1.4 HDLC Protocol

HDLC protocol is used for transmitting synchronous data between Point-to-point nodes.
It supports half-duplex as well as full-duplex communication [17]. In HDLC, the data is
encoded into a frame, as shown in Figure 2.4.
The HDLC frame contains 6 data fields as follows:

• Flag Field: 8-bit delimiter 0b0111 1110 to identify the start and end of a frame. Also
provides synchronization between transmitter and receiver.

• Address Field: One or more byte length data field used to represent the source and
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Figure 2.5: Bit-stuffing

destination address. If the transmitter creates the frame, it contains the destination
address, and if the receiver creates the frame, it contains source address.

• Control Field: One or two-byte contains flow/error information.
• Information Field: Variable-length field contains user information from the network

layer.
• FCS Field: It is an error detection field that contains 2 to 4 byte FCS data.

HDLC uses bit-stuffing to ensure that the bit pattern of the delimiter flag does not repeat
in the fields between flags [17]. At the transmitter side, the data field in the frame is stuffed
with zero after five ones in a row. The bit stuffed frame is transmitted from the physical
layer. At the receiver end, the frame is unstuffed to decode the original data as shown in
Figure 2.5. Error detection is carried out in the Data Link layer. At the transmitter side,
FCS is calculated for the payload data and added to the HDLC frame. At the receiver end,
the FCS is computed and compared with the received frame. If both are equal, then data
received was successful. Otherwise, the message frame is to be transmitted again under
control of an upper layer. Even though the Data Link layer implements error detection, it
does not include a function to perform error recovery. There are three types of frames, such
as information frame, supervisory frame, unnumbered frame.

Information Frame: This is also known as I-frame, which transports the user information
from the network layer. Also, these fames contain flow and error control information.

Supervisory Frame: This is also named as S-frame. These frames carry flow and error
control information and to send the empty frame. These frames do not have information
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Figure 2.6: IEEE 802.3 standard Manchester encoding

fields.

Unnumbered Frame: This also known as U-frame, these are used for various miscella-
neous purposes, including link management. Some U-frames contain an information field,
depending on the type of frame.

2.1.5 Manchester Encoding

Manchester encoding is a line coding technique in which each bit represents a transition from
low to high or high to low. It is also known as phase encoding. Manchester encoding provides
self-clocking, which means the clock signal can be recovered from the encoded data. Because
of self-clocking, this encoding technique is often used in many wireless communication
technologies. The clock rate is directly proportional to the line voltage transitions. Thus,
provides clock recovery. The IEEE 802.3 standard convention of Manchester encoding is
shown in Figure 2.6. Each bit is encoded as one clock cycle. Binary 0 is a transition from
high to low and 1 is a transition from low to high [18]. These transitions occur at clock
midpoint. Initially, overhead bits are transmitted for synchronization.

2.1.6 RIOT-OS

According to Hahm and Baccelli [19, 20], IoT devices can be classified into two categories
based on their capability and performance. High-end IoT devices, which includes single-
board computers like the Raspberry Pi and Low-end IoT devices, which are very much
resource-constrained to run traditional Operating System like Arduino. RIOT-OS is a
modular architecture, built on a minimalistic kernel [21]. RIOT-OS is an open source
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Operating System for low-end IoT devices [21]. RIOT-OS minimizes resource usage in
terms of RAM, ROM and power consumption. It supports 8 bit to 32 bit Micro Controller
Unit (MCU) and has developer-friendly Application Programmable Interface (API) which
supports C++ and Arduino libraries [20]. The designed features of RIOT-OS are energy-
efficient, small memory footprint, modularity and uniform API access for building complex
IoT applications [22, 21].
RIOT-OS provides hardware abstraction with Unified APIs [20]. It has generic periph-
eral API to access peripherals of a microcontroller. It provides specific code for handling
interrupts, system clock management, timers and peripheral drivers such as Universal Asyn-
chronous Receiver Transmitter (UART) and Serial Peripheral Interface (SPI). In terms of
board abstraction, a board in RIOT-OS is the practical design of real hardware. It provides
the Central Processing Unit (CPU) configurations, drivers for components on the board and
tools to interact. Driver model is a software module which can access and control the ex-
ternal hardware components connected to the CPU through RIOT-OS peripheral API. The
sensor/actuator abstraction can be provided by a generic API for accessing sensors and
actuators.
RIOT-OS allows developers to create multithreading applications. Multithreading is used
for logical separation between multiple tasks, simple prioritization of tasks. The application
can access the threads, based on thread priority. The distributed systems can be easily
implemented by using the kernel message API [21]. The synchronization primitives such as
mutex, semaphore and messaging (msg) are modelled as sub-modules of the kernel [20].
RIOT-OS allows the integration of third-party software and external libraries as packages.
During the compilation time, pkg system uses a Makefile to build the application [20].
RIOT provides a Command Line Interpreter (CLI) which can be accessed over UART for
debugging. RIOT-OS native is an essential hardware virtualizer that allows the compilation
and execution of RIOT-OS applications [20].
The source code for RIOT-OS is available in the GitHub repository [23]. The complete
documentation of RIOT-OS is available in RIOT Documentation [24].

2.2 Literature Review on Li-Fi Communication

In 2011, Harald Haas demonstrated Li-Fi communication at TED Global. Li-Fi was listed
as one of the top 50 innovative technologies [25] in TIME Magazine 2011. Li-Fi is a high
speed bi-directional fully connected, visible-light wireless communication system and is
complementary to Wi-Fi, which uses radio frequency for communication. Li-Fi also lends
support to the IoT. Li-Fi is an innovative technology that is composed to impact many
industries. Li-Fi is a fundamental 5G technology. It can unlock the IoT, pilot Industry 4.0
applications, light-as-a-service (LaaS) in the lighting industry [26].
A speed up to 10Gbps is obtained using Li-Fi, which is 250 times more than the speed of
super-fast broadband [15]. The RF spectrum is only a fraction of the entire electromagnetic
spectrum. The visible light spectrum and the Infrared (IR) spectrum are unregulated and
offer 780THz of bandwidth. The visible light spectrum extends from 380 to 780 nm in
wavelength [26].
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Li-Fi has entered in IEEE standardization and can be adopted for several specific industrial
use cases beyond its current smart lighting scope [3]. IEEE 802.15.7 standard defines a
Physical and MAC layer for short-range optical wireless communications using visible light
as the communication medium [27].
According to Isik et al., in the industrial manufacturing process, the process must be com-
pleted with high speed and security apart from the product quality. Hence, deploying new
communication strategies in the industries are evolving day by day.
In comparison, Li-Fi technologies preferred over Wi-Fi because of the high speed data
transmission rate and security in wireless communication systems [28].
When Wi-Fi systems are replaced with Li-Fi, the receivers must be positioned in specific
locations, where light from transmitter is uninterrupted. Thus, the line-of-sight problem
is solved. Besides, it can be seen that the production process is faster by using Li-Fi.
Therefore, internet connection can be provided without any interruption to the robotic
arms or any other devices [28].
Kim et al., [29] proposed a scheme for device management and data transport in IoT
networks using Visible Light Communication (VLC). In this concept, uni-directional trans-
mission from the VLC transmitter is used to send the location-based VLC data. From
the VLC receiver, the data is forwarded to aggregation agents and a central server in the
network.
Mariappan et al., [30] proposed a concept of “Internet of Light”(IoL). Integrating IoT agent
on IoL gateway and proposed different communications integrated with VLC such as VLC
- PLC, RF - VLC and Ethernet - VLC link to create heterogeneity gateway for IoT devices.
Recently, according to Zhang et al., [31] research on VLC indoor positioning systems with
simple system configurations. An indoor positioning system based on VLC was introduced,
with no synchronization requirement on the transmitters.
Vinnarasi et al., proposed Li-Fi communication for transmitting audio, text, navigation
using text to speech. One-way communication and bi-directional communication is tested
with Arduino and IR, LEDs and photodiodes [32].
Chowdhury et al., explains about industrial communications such as device-to-device (D2D),
machine- to-machine (M2M), chip-to-chip, device/machine-to-user, user-to-device/machine.
These communications can be achieved using VLC technologies [33].
Schmid et al., proposed [34] LED as a photo detector to receive optical messages using
the same LED that is used for transmission a setup, which reduces the complexity of the
device. The capacitance of LED discharges at different speeds depending on the intensity
of incoming light. The discharge speed is directly proportional to the intensity of light [34].
The maximum achievable data rates in Li-Fi are in the ascending order of phosphorous
coated LED, red, green and blue (RGB) LEDs, Gallium Nitride (GaN) micro LEDs and
laser-based lighting [26].
To summarize, the existing concepts and current work regarding industry 4.0, factory plan-
ning laboratory and Li-Fi communications are discussed. After considering all the concepts
as a background and ground truth, this thesis proposes the introduction of Li-Fi communi-
cation protocol for distributed structures in factory planning laboratory.



CHAPTER 3

Thesis Contribution

This chapter describes the software and hardware implementation of the Li-Fi transceiver
and design of the factory modules. The experiments are conducted to identify a suitable
Li-Fi transceiver pair, in the context of reliability and maximum communication distance.
The integration of Li-Fi communication on the factory modules was performed with two
different prototypes.

3.1 Implementation

This section discusses the design choices, requirements, software architecture and imple-
mentation of the Li-Fi protocol.

3.1.1 Hardware Setup

An Arduino-Mega 2560 is used as a development board because it is inexpensive, power-
ful tool to interface with the sensors and supports different development platforms. The
Arduino-Mega 2560 has 16MHz crystal oscillator which is used for the controller clock.
The Arduino has both analog and digital General Purpose Input and Output (GPIO) pins
and an inbuilt Analog to Digital Converter (ADC). Universal Serial Bus (USB) interface
is used to program the Arduino board. For complete details of the Arduino-Mega 2560
controller [35]. The components required to build Li-Fi transceivers and distributed factory
resources are given below:

• Controller: Arduino-Mega 2560
• Transmitter: LED
• Receiver: LED, LDR
• Sink selection: RFID reader and tags
• Factory resources: Conveyors, turntable and slider
• Power source: 9V battery
• Resistors: 270Ω, 2MΩ
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Figure 3.1: Software architecture

• Miscellaneous components: Relay module, connecting wires

3.1.2 Software Tools

RIOT-OS is used as a development platform. RIOT-OS provides a variety of functions, as
discussed in Section 2.1.6, to implement the Li-Fi protocol. The operating system provides
the multi-threading functionality for designing the multiple transceivers for each node. The
software architecture is shown in Figure 3.1. The sensors and actuators are connected to
the Arduino and control logics are programmed on RIOT-OS base. The design of a Li-Fi
transceiver is explained in the following sections.
The circuit schematics are designed by using Fritzing software tool [36]. The timing dia-
grams are retrieved by using Pulse view tool [37]. The component holders are shown in
Figure 3.15 is designed using an online 3d modelling design tool known as tinkercad [38]
and printed using Arduino Materia101 3d printer. The architectures, control algorithms
and frame formats are sketched using draw online tool [39].

3.1.3 Protocol Design Requirements and Choices

The main design choices and requirements for the protocol are shown in Table 3.1.
The main requirement is to provide clock recovery during communication. This can be
achieved by the Manchester encoding technique, which provides self-clocking and clock
synchronisation. The alternative option is using two different color LEDs for the clock
signal and data signal. But, if the receiver is LDR, which is sensitive to all frequencies of
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Design Requirement Design choice
Clock recovery Manchester encoding

OOK Modulation LED as transmitter
Error detection CRC-16-CCITT

Multiple transceivers Multithreading
Routing Flooding
Device ID EEPROM

Communication type Full duplex
Topology Point-to-point

Table 3.1: Design requirements and choices

light and cannot differentiate between the clock and data light. So, the Manchester encoding
is chosen as an encoding technique. As, LED is used for transmission, which cannot be used
to shift frequency and phase. A modulation technique is required for transmission using
LED. The OOK is a simple modulation technique for transmission of data using turning
on and off the LED. The OOK is a binary Amplitude Shift Keying (ASK) technique, high
amplitude represents a binary 1, and low amplitude (not zero amplitude) represents binary
0. The CRC-16-CCITT is chosen for error detection in the frame.
Each module in the factory has to communicate with the neighbouring nodes. So, a single
node requires more than one transceiver interface. The full-duplex multiple transceiver
interfaces are realised and accessed simultaneously using multi-threading functionality. It
can be implemented by the event-based in a single thread, which increases the complexity in
code. Since the factory planning laboratory is meant for demonstration of new technologies,
implementing explainable and understandable code is more important than efficient code.
The factory planning laboratory consists of many modules which indeed required a multi-
hop communication. This thesis focuses on the implementation of Li-Fi protocol, not on
routing, a simple and robust routing algorithm is chosen. Flooding is such an algorithm
and requires little resources in term of Random Access Memory (RAM) and Read Only
Memory (ROM). Each module in the factory should have a unique device ID. This can
be achieved by storing the device ID on EEPROM of the Arduino controller. The data
stored in EEPROM remains, even new program flashed in the controller. This device ID
can be used as layer 2 address. Every module in the factory has to communicate with the
neighbouring module. This can be realised by the point- point communication topology.
Full duplex communication is chosen for bi-direction communication between the factory
modules.

3.1.4 Frame Format of Li-Fi Protocol

The frame format for the Li-Fi protocol as shown in Figure 3.2 is derived from the frame
format of HDLC protocols, as shown in Figure 2.4.
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Figure 3.2: Frame formats

Basic Frame

The basic frame is shown in Figure 3.2a contains four mandatory fields, such as the sync.,
delimiter, data, delimiter. The frame synchronisation of the receiver and transmitter can
be done using Sync. field. Delimiters can recognize the start and end of the frame. The
delimiters contain 0b0111 1110 to identify the start and end of the frame. The data field
contains the Protocol Data Unit (PDU) and the FCS. The FCS uses CRC-16-CCITT standard
to calculate the checksum error of the PDU [40].

Information Frame

The information frame is shown in Figure 3.2b carries data from source to destination. It
consists of the PDU field contains source address, a destination address, payload data and
FCS from the datalink layer and the synchronisation byte and delimiters from the physical
layer. The Information frame is identified by the source address, which always starts the
Most Significant Bit (MSB) with 1 and the rest 7 bits are unique identification. The source
and destination addresses are acts as the layer 2 address of the OSI model. The source
and destination addresses are the device IDs stored in the EEPROM of the node controller.
These device IDs are unique within the factory model.
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Input: Basic Frame
Output: Manchester encoded data frame format
//set the clock to 30ms;
//set the mid point to i.e. 30/2;
//set the ticks per clock to 10;
//send sync;
//send start delimiter;
//send data;
//send end delimiter ;
while check until input data is transmitted do

if binary value = 1 then
//Manchester 1: 01;
LED Low (Logic 0);
delay(mid point);
LED High (Logic 1);
delay(mid point);

else
//Manchester 0: 10;
LED High (Logic 1);
delay(mid point);
LED Low (Logic 0);
delay(mid point);

end
end

Figure 3.3: Transmission Algorithm

Control Frame

The PDU of the control frame contains the control command, payload data and the FCS.
The control frame shown in Figure 3.2c is identified by the control command, which always
starts the MSB with 0 and followed 7 bits of the control command. It transmits data to
control the actuators of adjacent nodes.

3.1.5 Software Implementation of Li-Fi Protocol

Basic Transmission Algorithm:

The data transmitted using the frame format, as shown in Figure 3.2a The transmission
algorithm for the frame is illustrated in Algorithm 3.3. Each frame is encoded with Manch-
ester encoding, as discussed in Section 2.1.5 and transmitted with OOK modulation de-
scribed in Section 2.1.3. The transmitter uses the controller clock to transmit the data.
Each binary 1 is encoded with clock transition from low to high and binary 0 is encoded
as clock transition from high to low as shown in Figure 2.6. If the data field in the frame
contains a bit pattern like 0b0111 1110, then the receiver is confused. The algorithm to
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avoid sending 0b0111 1110 is to stuff one 0 after every sequence of 5 ones in a row. This is
known as bit-stuffing. At the receiver end, bit de-stuffing is carried to retrieve the actual
information. More details regarding bit stuffing and de-stuffing are given in Section 2.1.4.

Basic Reception Algorithm

The algorithm for the reception of Li-Fi protocol is illustrated with the flowchart shown
in Figure 3.4. LED, LDR is used as receivers and connected to the analog input of the
Arduino. The LDR receives analog data based on the intensity of light received. The
Arduino-Mega 2560 is used as a controller, which has inbuilt 10 bit ADC, it can detect 1024
discrete analog levels. The digital output value is calculated [41] using Equation 3.5.

𝑅 = 𝑉ref
(2𝑛) − 1 (3.1)

𝑉ref = 5V (3.2)
𝑛 = 10 bit (3.3)
𝑅 = 0.00489 (3.4)

𝐷out = 𝑉in
𝑅 (3.5)

𝑉in = 0V to 5V (3.6)
𝐸.𝑔 ∶ 𝑉in = 2.5V (3.7)

𝐷out = 511.24 (3.8)

Vref is the reference voltage and, it is the maximum value that the ADC can convert, which
is set to 5V. Vin is input analog value received at the analog pin. R is ADC resolution and
n is 10 bit. Dout is digital output.
The ADC has a maximum value of 1024 and a minimum value of 0. The ADC provides
digital output, which is proportional to the analog input value. The ADC clock (fADC) uses
the controller clock, prescale factor and cycles per clock for conversion. The Arduino-Mega
2560 has 16MHz crystal oscillator (fCPU) and default prescale factor (nprescale) of 128. Each
sample conversion requires 13 cycles per clock (ncycles per sample). The sampling of analog
data depends on the sampling frequency (f) of the controller.

𝑓CPU = 16MHz (3.9)
𝑛prescale = 128 (3.10)

𝑓ADC = 𝑓CPU
𝑛prescale

(3.11)

= 125 kHz (3.12)
𝑛cycles per sample = 13 (3.13)

𝑓 = 𝑓ADC
𝑛cycles per sample

(3.14)

= 125 kHz
13 (3.15)

≈ 9.6154 kHz (3.16)
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Figure 3.4: Basic reception algorithm

So, the sampling frequency with default parameters is set to 9.6 kHz. The classifier is
calculated based on the average of the maximum and minimum ADC values. The classifier
differentiates the received data in analog logic levels for decoding. The classifier value is
considered to be the threshold value to convert discrete analog data into binary data. This
binary data is decoded using Manchester coding, as shown in Figure 2.6. The Manchester
coding provides clock synchronisation. If both transmitter and receiver are synchronised,
then it checks for the delimiter and then receives the payload data until it gets an end
delimiter. The sensitivity of the Li-Fi receiver is calibrated based on the ambient light.

Li-Fi Transceiver

The transceiver uses the basic transmission and reception algorithms. The parameters
shown in Listing 3.1 are used for communication.

1 #define TICK 3//<-- number of milli seconds per tick (--> use for delay())
2 #define CLOCK_HALF 5 // <-- number of ticks per half clock
3 #define CLOCK (2 * CLOCK_HALF) // <-- number of ticks per clock (1 data bit)
4 #define GET_CLASSIFIER_TICKS (TICK * CLOCK * 3)
5 #define MINIMUM_HIGH_LOW_DIFFERENCE 50 // <-- used in get_classifier()

Listing 3.1: Parameters

The CLOCK cycle contains 10 TICKs and each TICK of 3ms. In one CLOCK cycle, one bit of
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Figure 3.5: Full duplex communication

data is transmitted. The classifier is calibrated using the MINIMUM HIGH LOW DIFFERENCE,
which is set to 50.

Transceiver Functions: The functions shown in the Listing 3.2 are used to design the Li-
Fi transceiver. The main transmission and reception functions are defined in the LiFi
class. The public function send_data() initiates the transmission. The private functions
such as send_sync send_delimiter send_byte are responsible for creating the frame of
data for transmission. The encoding is carried by man_one() and man_zero(). The public
function receive() is responsible for the reception of data. The private functions such as
get_classifier(), sync_clock() and get_delimiter() are used for identifying incoming
data. The get_bit() function is used for decoding the Manchester data.

1 class LiFi {
2 // private functions
3 private:
4 //transmitter functions
5 void man_one();//<-- sending manchester one
6 void man_zero();//<--sending macherster zero
7 uint8_t send_byte(uint8_t b, uint8_t ones_in_a_row);//<-- sending one uint8_t of

data
8 void send_sync();
9 void send_delimiter(void);

10 //receiver functions
11 int get_classifier();
12 int get_level();
13 int sync_clock();
14 int get_delimeter();
15 int get_bit();
16 int get_byte(uint8_t *dest);
17 int receive_frame(uint8_t *buf, uint8_t buf_size);
18 //public functions
19 public:
20 //transmitter fuctions
21 LiFi(int sPin, adc_t rPin);
22 void send_data(const uint8_t *data, uint8_t data_len);
23 //receiver functions
24 int receive(uint8_t *buf, uint8_t buf_size);
25 };

Listing 3.2: Transceiver functions

Multi-threading: The basic idea is to implement multiple transceivers with full-duplex
communication, as shown in Figure 3.5 because each factory module has to send and receive
data simultaneously. This can be achieved by applying multi-threading functionality.
The decision nodes in the factory planning laboratory have four neighbouring nodes, each
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Figure 3.6: Flooding

node has to access all the neighbouring nodes. The node requires four Li-Fi transceiver
interfaces to access the neighbouring nodes simultaneously. The multi-threading function-
ality allows creating multiple and concurrent threads for transceivers. Each transceiver is
assigned with two threads, one for transmission and another one for reception. All threads
access the same shared memory, as shown in Listing 3.3. The threads can access based on
the thread priority.

1 static char tx_stack1[THREAD_STACKSIZE_DEFAULT];
2 static char rx_stack1[THREAD_STACKSIZE_DEFAULT];
3 static char tx_stack3[THREAD_STACKSIZE_DEFAULT];
4 static char rx_stack3[THREAD_STACKSIZE_DEFAULT];
5 static char tx_stack4[THREAD_STACKSIZE_DEFAULT];
6 static char rx_stack4[THREAD_STACKSIZE_DEFAULT];
7 static char tx_stack2[THREAD_STACKSIZE_DEFAULT];
8 static char rx_stack2[THREAD_STACKSIZE_DEFAULT];

Listing 3.3: Memory alloacation for threads

Each transceiver interface performs concurrent execution of transmission and reception of
data. The transceiver interfaces are defined as shown in the listing 3.4.

1 PLiFi lifi1(4, 0, on_rx, NULL);
2 PLiFi lifi2(5, 1, on_rx, NULL);
3 PLiFi lifi3(6, 2, on_rx, NULL);
4 PLiFi lifi4(7, 3, on_rx, NULL);

Listing 3.4: Four Li-Fi interfaces

Flooding: The information frame is identified by the source address, which plays an im-
portant role in communication between modules. If the destination address is equal to the
device ID, then, data is processed. If the destination address is not equal to the device ID,
then the data is transmitted to the different Li-Fi interfaces connected to the module con-
troller. Each module contains a maximum of four neighbouring modules. So, each module
should have four transceiver interfaces. The data forwarded to all other interfaces except
the interface which receives the data is known as flooding, which is shown in Figure 3.6.
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Figure 3.7: Collaboration diagram

Collaboration Diagram of Protocol:

The inbuilt libraries and the classes written for the Li-Fi communication are explained with
the collaboration diagram, as shown in Figure 3.7. The dependencies of different libraries
are mentioned; the main thread is the default thread. It accesses the other default libraries
to perform necessary actions. The functionality of the Li-Fi protocol is implemented in the
LiFi class. The transmission and reception logic is programmed in LiFi class. The Parallel
LiFi (PLiFi) class access the LiFi class to perform parallel execution of the transceiver
functionality. The main thread calls PLiFi class to perform any communication task, the
PLiFi calls LiFi class to execute the task. The PLiFi class creates instances of lifi
interfaces for transmission and reception. The PLiFi library uses mutex header file to
perform the multi-threading functionality to execute the threads incorrect order and avoids
critical thread execution conditions. The RIOT-OS defined periph/adc to perform ADC
operations and periph/eeprom is used to perform the reading and writing of EEPROM of
the Arduino-Mega 2560 controller.

3.1.6 Hardware Design of Li-Fi Transceiver:

The hardware design of Li-Fi transceiver can be designed in two different variations. The
Arduino-Mega 2560 is used as the controller, and blue color LED is used as transmitter
and receiver. A 270Ω resistor is used at the transmitter side, and 2MΩ resistors are used
at the receiver end. The LED based Li-Fi transceiver, shown in Figure 3.8a. The LDR
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Li-Fi: Transceiver
Tx: Transmitter
Rx: Receiver

GND: Ground

a) LED based Li-Fi transceiver b) LDR based Li-Fi transceiver

based Li-Fi transceiver is shown in Figure 3.8b. LED as transmitter and LDR as the
receiver. 270Ω resistors are used at the transmitter and receiver end. The transmitter
is connected to GPIO digital pin D4 and receiver is connected to GPIO analog pin A0 of
Arduino-Mega 2560 controller. In the factory planning laboratory, some resources have four
neighbouring modules. A four-way Li-Fi transceiver is attached to the factory module to
make the laboratory as dynamic, as shown in Figure 3.9. The four-way Li-Fi transceiver
is achieved using multi transceivers in Section 3.1.5. The Arduino controller is capable of
handling the four transceiver interfaces. The receivers are connected to the analog GPIO
pins from A0 to A3. The transmitters are connected to the digital GPIO pins from D4 to
D7. These four-way transceivers are used for turntable shown in Figure 3.10b and slider
shown in Figure 3.10c.

3.2 Design of Modules in Factory Planning Laboratory

3.2.1 Design of Factory Modules

The factory planning laboratory has different material flow resources such as conveyor
tables, turntables, sliders, as shown in Figure 3.10. In any manufacturing industry, there
is always a need for flexibility in the plant layout. If the factory resources have to stand-
alone functionality, then it is easy to change the structure, and the layout is scalable. The
factory modules designed in here are for stand-alone functionality. The factory modules
have different nodes, such as master node, source node, decision node and sink nodes.
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Li-Fi: Transceiver

Tx: Transmitter

Rx: Receiver

GND: Ground

Figure 3.9: Four way Li-Fi Transceiver

Master Node

The master node consists of a controller, RFID reader, Li-Fi transceiver module and status
LEDs. The master node is the root node and the remaining factory resources are placed
around it and communicates with the master. RFID reader connected to the controller of
the master node. The RFID tag with sink information is placed on the source node. The
RFID reader detects the tag ID and processes the information and selects the sink. The
master module provides the control flow of the product to the nodes in the factory layout.
This module provides the status of product flow in the factory structure. The status LED
glows based on the sink selection.

Conveyor Table

The conveyor tables are the basic building blocks of the material flow and logistics industry,
as shown in Figure 3.10a. In this context, the conveyor tables are used as source and sink
nodes. A source node contains two Li-Fi transceivers, one is directed to the master node,
and another one is directed to the decision node such as turntable and sliders. A sink node
contains one Li-Fi transceiver, which is directed to the decision node such as turntable
and sliders. The connection diagram of the conveyor as a stand-alone factory module is
as shown in Figure 3.12. The conveyor has two Proximity Sensor (PS) and one Conveyor



27

a) Conveyor table b) Turntable

c) Slider

Figure 3.10: Factory resources

Motor (CM) for driving the conveyor forward and reverse. The PS as the sensor control
the actions of the CM for logical transportation of products. The sensors and actuators are
programmed based on the control strategy of individual processes. The CM is connected
to the relay and 9V battery. The Arduino board is used as node controller and is powered
up with 9V battery.
The conveyor has three states of operation. It can move forward, reverse and stop. The
control logic for these states depends on the process flow.

Turntable and Slider

The turntable is the main building block of logistics shown in Figure 3.10b. This is an
important resource to make the factory layouts scalable and flexible. The turntable is the
decision node where it has more probabilities of control actions. The connection diagram for
the turntable is shown in Figure 3.13. It has Arduino-Mega 2560 as node controller, four-
way Li-Fi transceiver module connected to the controller, one CM to control the conveyor
belt of the turntable, one PS to sense the product flow, one Rotatory Motor (RM) for the
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Figure 3.11: Master node

turning actions and two switches Left Switch (LS) and Right Switch (RS) to control the
turning actions of the turntable. A relay module is used to control two motors and two 9V
batteries to power up the board and motors.
The slider has almost the same circuit connections, but the functionality is a bit different.
It is also known as railing contact. This is also a major factory module which can change
the factory structure. This can be used to add many streams of material flow by adding
new structures to the slider. This consists of the Arduino controller and four-way Li-Fi
transceiver module. The turntable and slider have different states of operation. Based on
the process flow, these states are logically defined.

Design of Control Strategy

The control strategy for the prototypes that are discussed in Section 3.3.3 is explained
with the control algorithm shown in Figure 3.14. The product flows through different
intermediate nodes to reach the destination.
The control flow is illustrated as follows:

1. Sink information of the product is stored in the RFID tag or card
2. RFID module reads the information from the tag placed on the source node.
3. Master selects the sink based on the RFID information.
4. Based on the sink selected, status LED glows as discussed in the Section 3.2.1
5. The sink information is forwarded to the source node to activate the conveyor belt.
6. When the product reaches the second sensor of the conveyor belt, the source node

forwards the sink information to the turntable/slider
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PS1: Proximity Sensor
PS2: Proximity Sensor
CM: Conveyor Motor

GND: Ground

Figure 3.12: Connection diagram of conveyor table

7. Intermediate node activates the CM.
8. When a product reaches the sensor on the belt, the intermediate node forwards in-

formation to the particular sink.
9. The particular sink conveyor receives the information and activates CM.
10. When the product reaches the second sensor of the sink node, the CM stops.
11. The sink node sends acknowledgement information to the master using information

frame 3.2b.
12. This data passes through the intermediate nodes to the master.
13. If the master receives the acknowledgement information, the corresponding green LED

glows.
14. The status LEDs represent the status of the product from source to sink.
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PS: Proximity Sensor
RM: Rotatory Motor
CM: Conveyor Motor
LS: Left Switch
RS: Right Switch

GND: Ground

Figure 3.13: Connection diagram of turntable and slider

3d Design of Component Holder

All the components required to control the factory resource as stand-alone are integrated
on the module. To attach the hardware components such as Arduino controller, relay
module, RFID, Li-Fi transceiver module and batteries are requires component holders.
The components holders are shown in Figure 3.15, modelled with an online 3d designing
tool and fabricated using Arduino Materia101 3d printer.

3.3 Experiments

This section describes the experiments conducted to identify the protocol parameters, which
give reliability, maximum communication distance. The integration of Li-Fi communication
in factory planning laboratory is tested with two prototypes of distributed factory layouts.
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Figure 3.14: Control strategy for the factory prototype with turntable and slider

3.3.1 First Experiment: Maximum Communication Distance

Aim

The objectives of this experiment are to find the maximum communication distance and to
identify a suitable transceiver pair.

Experimental Setup

LED as a receiver: The LED based Li-Fi transceiver shown in Figure 3.8a is used in this
experiment. The experimental setup shown in Figure 3.16 is verified with different color
LEDs as transceivers and with different TICK sizes. The parameters of Li-Fi protocol used
for building the LED based transceiver are:

• Payload = 1B
• TICK =3ms and 4ms // number of milliseconds per Tick
• CLOCK_HALF = 5 // number of ticks per half clock
• MINIMUM_HIGH_LOW_DIFFERENCE = 3 // to get the classifier at the receiver
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Figure 3.15: Component holders

LDR as a receiver: The LDR based Li-Fi transceiver is designed, as shown in Figure 3.8b.
The experimental setup with LDR based transceiver is shown in Figure 3.17. This setup
is tested with different color transmitting LED and LDR as the receiver. The hardware
components required for this experimental setup are:

• Arduino-Mega 2560.
• LEDs: Red, Blue, Yellow, Green, White at the transmitter side.
• LDR at the receiver end.
• 270Ω resistor at the transmitter side and 270Ω resistor at the receiver end.

The parameters of Li-Fi protocol used for this experimental setup are:
• Payload = 1B
• TICK = 3ms and 4ms // number of milliseconds per Tick
• CLOCK_HALF = 5 // number of ticks per half clock
• MINIMUM_HIGH_LOW_DIFFERENCE = 50 // to get the classifier at the receiver

Procedure

Procedure for LED as a receiver: In the first iteration, the communication distance is
measured with TICK size of 3ms. A series of iterations are performed to find the maxi-
mum communication distance. In the next instance, the TICK size is changed to 4ms and
continued with the same procedure to find the communication distance. The maximum
communication is verified with different color LEDs as transceivers.
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Figure 3.16: Li-Fi Transceiver : LED as a receiver

Communication Distance in cm with different TICK sizes
Color of LED 3ms TICK 4ms TICK

RED 6 cm 17 cm
BLUE 8 cm 30 cm

YELLOW 3cm 13 cm
GREEN 4.4 cm 23 cm
WHITE 30 cm 68 cm

Table 3.2: Maximum communication distance with different LEDs

Procedure for LDR as a receiver: Initially, a red LED is used as a transmitter and the LDR
as a receiver. The communication distance is measured with a TICK size of 3ms. A series of
iterations performed to find the maximum communication distance. The same procedure
is applied for different color transmitting LEDs such as Blue, Yellow, Green, White and
LDR as a receiver to find the effective transceiver pair. In the next instance, the TICK
size is changed to 4ms and performed the same process to verify maximum communication
distance. The experimental results listed in Table 3.2 are evaluated in Section 4.1.1.

3.3.2 Second Experiment: Reliability of the Li-Fi protocol

Aim

The aim of this experiment is to find the reliability of Li-Fi communication between two
nodes, based on different communication distances, payloads and TICK sizes.
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Figure 3.17: Li-Fi Transceiver : LDR as a receiver

Experimental Setup

The hardware setup for this experiment is shown in Figure 3.17. The reliability of protocol
is verified with a white LED as a transmitter and LDR as a receiver. The frame is shown in
Figure 3.2b is transmitted 100 times with different payloads and verified how many times
the data is successfully received. The communication distance is varied from 5 cm to 20 cm.
The protocol parameters are as follows:

• TICK=3ms and 4ms // number of milliseconds per Tick
• CLOCK_HALF = 5 // number of ticks per half clock
• MINIMUM_HIGH_LOW_DIFFERENCE = 50 // to get the classifier at the receiver

Procedure

Initially, both transceivers are placed at 5 cm communication distance with TICK size of 3ms.
The transceiver sends 1B payload using the information frame illustrated in Figure 3.2b.
The transceiver in the other end receives data. This transmission is repeated 100 times,
and the second transceiver counts on successful data reception. This procedure applied for
different payloads from 1B to 5B. In the next instance, the TICK size is changed to 4ms
and the communication distance is set to 5 cm. A series of iterations performed to compute
the reliability of Li-Fi protocol with different parameters. The reliability of Li-Fi protocol
with 3ms TICK is listed in Table 3.3. The comparison of the reliability with 4ms TICK is
listed in Table 3.4. These results are evaluated in Section 4.1.1.
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Reliability with different communication distances
Payload 5 cm 10 cm 15 cm 20 cm

1B 99% 97% 96% 96%
2B 99% 98% 96% 96 %
3B 98% 96% 95% 94%
4B 97% 96% 95% 93 %
5B 97% 95% 93% 91%

Table 3.3: Reliability with 3ms TICK

Communication distance
Payload 5 cm 10 cm 15 cm 20 cm

1B 99% 98% 97% 95%
2B 97% 96% 96% 95%
3B 97% 96% 95% 95%
4B 97% 96% 95% 94%
5B 96% 95% 94% 93%

Table 3.4: Reliability with 4ms TICK

3.3.3 Third Experiment: Integration of Li-Fi Communication in a Factory Planning Lab-
oratory

Aim

The main objectives of this experiment are to test the Li-Fi protocol in the factory planning
laboratory and finding the reliability for multi-hop communication.

Experimental Setup

This experiment is conducted with two prototypes built on factory modules. The layout
of factory planning laboratory can be changed with the stand-alone factory resources. The
construction of each module was discussed in Section 3.2.1. These prototypes are designed
based on the conceptual model discussed in Section 1.1. The hardware required for the
experimental setup of prototypes are:

• An Arduino-Mega 2560 for every module as a controller
• RFID reader and tags for sink selection
• Master with status LEDs
• Conveyor tables as source and sinks
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TurnTable

Sink node 3

Sink node 2

Sink node 1

Source node
Master node

RFID reader

Figure 3.18: Factory prototype with turntable module

• Turntable, slider as the intermediate nodes
• Li-Fi Transceiver module
• Relay module
• 9V batteries

The parameters used for Li-Fi protocol are:
• Tick = 3ms and 4ms // number of milliseconds per Tick
• CLOCK_HALF = 5 // number of ticks per half clock
• CLOCK = (2* CLOCK_HALF)
• MINIMUM_HIGH_LOW_DIFFERENCE = 50 // to get the classifier at the receiver
• White LED as transmitter and LDR as receiver for Li-Fi transceiver module

Prototype setup with the turntable: In this experimental setup a distributed structure is
created with the turntable as a decision node. The master node with the RFID reader and
source and three sink nodes. The setup is shown in Figure 3.18.
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Master node

Source node

SliderSink node 3
Sink node 2

Sink node 1

RFID reader

Figure 3.19: Factory prototype with slider module

Prototype setup with the slider: In this setup slider is used as decision node. The master
node and source nodes are placed as shown in Figure 3.19. The sinks are placed at the exits
of slider.

Data frames used in communication: There are two types of data frames, as discussed in
Section 3.1.4 is used for communication between modules. The information frame 3.2b,
which is used to send data from one node to a particular destination node. The control
frame shown in Figure 3.2c sends the actuator control information to the neighbouring
node. The device Ids are stored in the EEPROM of the Arduino controller. This device Id
is used to recognize the type of module. Table 3.5 lists the type of factory modules with
their device IDs. The device IDs are unique in the laboratory. The modules communicate
with these device IDs. The control data and sink status data for different sinks is shown in
Table 3.6. The control data drives the product from source to destination. The sink status
data provides product status information to the master.
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Module Type Device ID
Master 0xFF
Source 0xAA
Slider 0xBB

Turntable 0xCC
Sink 1 0xA1
Sink 2 0xA2
Sink 3 0xA3

Table 3.5: Module type and device Id

Module type Control data Sink status
Sink 1 0xD1 0xF1
Sink 2 0xD2 0xF2
Sink 3 0xD3 0xF3

Table 3.6: Different types of information

Procedure

Communication reliability is tested for multi-hop communication. There are different mod-
ule connected to each other to create a distributed layout. The information has to pass
between different modules. These prototypes are evaluated by with reliability of multi-hop
communication between the modules The designed prototypes follow the control strategy
discussed in Section 3.2.1. The control and sink status information is listed in Table 3.6.

Prototype with Turntable The control strategy of this model is shown in Figure 3.14. The
process flow to sink 1 is explained as follows:

1. The master node with the RFID reader detects the sink information from the RFID
tag placed on the source node.

2. The master node process RFID tag information and selects the sink 1.
3. The master node forwards sink 1 control information as 0xD1 to the source node.
4. The send status LED on master node glows.
5. The source conveyor receives control frame from the master and CM gets activated.
6. When the product reaches at Proximity Sensor 2 (PS2), then source conveyor sends

control information to the turntable module.
7. The CM of turntable gets activate and product moves forward to PS.
8. Then the Li-Fi interface of turntable, which is directed to sink 1 transmits control

information.
9. Then RM rotates the turntable to the right and activates forward action of belt with

CM to pass the product to sink1 node.
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TICK size Reliability of multi-hop communication (3 hops)
3ms �95%
4ms �92%

Table 3.7: Reliability of multi-hop communication with different TICK sizes

10. The sink 1 conveyor starts moving forward and the product reaches to PS2.
11. RM rotates the turntable to the default position.
12. This node generates sink status information 0xF1 and transmits the data to the master

node with frame format described in Figure 3.2.
13. If the master node receives 0xF1, then the process flow is succeeded and sink 1 receive

status LED glows.
This procedure is tested for 60 products to find the reliability of multi-hop communication
with the TICK size of 3ms. The experimental result is listed in Table 3.7

Prototype with the Slider This prototype also uses the control algorithm described in
Figure 3.14. The process flow to sink 3 is explained as follows:

1. The product with sink 3 RFID information is placed on the source node.
2. The master receives information from the RFID reader and selects the sink.
3. The master node sends sink 3 control information to the source node as 0xD3.
4. The sink 3 send status LED glows at the master node.
5. The CM of the source gets to activate the conveyor belt.
6. The product moves forward and reaches to PS2.
7. The source node sends control information to the slider module.
8. The CM activates the conveyor belt on slider.
9. The product moves forward and reaches to PS2.
10. Li-Fi interface directed to sink3 transmits control information to sink 3 node.
11. TheSlider Motor (SM) activates to move the slider to the left and CM activates the

reverse action of belt.
12. The sink 3 conveyor starts moving and the product reaches to PS2.
13. The SM moves right to the initial position.
14. This sink node generates sink status data 0xF1 and transmits the data to the master

node with frame format described in Figure 3.2.
15. If the master receives 0xF3, then the process is succeeded and sink 3 receive status

LED glows.
This procedure is repeated for 60 times to find the reliability of multi-hop Li-Fi communi-
cation with the TICK size of 4ms. The result is listed in Table 3.7.





CHAPTER 4

Thesis Outcome

In this section, the experimental results and the parameters of the Li-Fi protocol are eval-
uated to identify the good transceiver pair and communication reliability. Integration of
Li-Fi communication in factory planning laboratory is evaluated.

4.1 Evaluation

4.1.1 Discussion of Experimental Results

Maximum Communication Distance

The maximum communication experiment discussed in Section 3.3.1 provides the experi-
mental results of both LED based Li-Fi transceiver and LDR based Li-Fi transceiver.
The LED based Li-Fi transceiver gives a maximum communication distance of 2 cm with
4ms TICK and 1 cm with 3ms TICK. This experiment also states that only blue color LED
provides reliable communication, and other color LEDs failed to communicate. As, this
experiment results in very smaller communication distances, one more experiment is con-
ducted with LDR based Li-Fi transceiver. This results in higher communication distances,
LDR is used as a receiver which is sensitive to different light intensities. So, different color
LEDs used as transmitters and verified the maximum communication distances. The graph
is shown in Figure 4.1 illustrates the comparison of maximum communication distance with
different transmitting LEDs and TICK sizes. The protocol parameter TICK size also has a
major impact on the maximum communication distance. As shown in Table 3.2, the white
LED as a transmitter and LDR as a receiver gives a distance of 30 cm with a TICK size of
3ms. The maximum communication distance achieved was 68 cm with a TICK size of 4ms.
From this experiment, it is clear that higher TICK size results in longer communication
distances.
From the graph, the communication distances of other LEDs show that the white LED as
a transmitter and LDR as a receiver can be used for the design of Li-Fi transceiver in the
factory planning laboratory.
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Reliability of the Li-Fi protocol

Following the first experiment, this experiment gives the reliability of the protocol, which
plays a major role in communication between factory modules. The reliability is verified
between two nodes with the rate of successful reception of data explained in Section 3.3.2.
The comparison of reliability with different parameters are listed in Table 3.3 and Table 3.4.
The graphs are plotted from the tables. The graph shown in Figure 4.2 illustrates the
increase in payload results in loss of data. The reliability of 5B payload is less compared
to 5B payload with a communication distance of 5 cm.
The graph shown in Figure 4.3 explains the increase in distance with constant payload de-
creases the reliability. The reliability of 3B payload with different communication distances
is explained in the graph. The graph illustrates the influence of TICK size on reliability. If
the communication distance is more,then 4ms TICK size gives slightly better reliability.
The graph is shown in Figure 4.4 provides the comparison data of reliability with different
payloads, communication distances and TICK sizes. It is shown that the TICK size does not
have any significant effect on reliability for smaller communication distances. The reliability
is less with more payload and longer communication distances.
After carefully examining all graphs discussed in this section, it is concluded that 5 cm
communication distance results in 96% to 99% of reliability with different payloads and
TICK sizes. The communication distance effects the reliability, but the protocol provides
slightly better reliability for longer communication distances with 4ms TICK size. The
distance between factory modules as shown in Figure 3.18 and Figure 3.19 is very small.
The TICK size impacts more on communication distance not significantly on reliability. So,
3ms TICK size can be used as CLOCK parameter for faster communication.

Integration of Li-Fi Communication in a Factory Planning Laboratory

From the first two experiments, the suitable Li-Fi transceiver is identified which provides
longer communication distance and reliable communication. The white LED as a transmit-
ter and LDR as a receiver are chosen for designing the Li-Fi transceiver in factory planning
laboratory.
In this experiment, the Li-Fi protocol was integrated into factory planning laboratory. This
experiment is conducted on two different prototypes and verified the reliability of multi-
hop communication. The two prototypes require three hops to communicate from source
to sink. The reliability is calculated with two TICK sizes. The reliability was calculated by
sending the product from source to destination explained in Section 3.3.3 for 60 times. The
results are listed in Table 3.7. This experiment differentiates the reliability with single-hop
and multi-hop. If the reliability (r1) is 99% for single-hop, the theoretical reliability (r3), in
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this case three hop is calculated as follows:
𝑙 = 𝑛 − 1 (4.1)

𝑟𝑙 = 𝑟1
𝑙 (4.2)

𝑟3 = 0.993 (4.3)
≈ 0.97 (4.4)

Here l is number of hops and n is number of nodes. The theoretical reliability for three
hops is 97%. The practical reliability with the TICK size of 3ms is 95%, which is slightly
lesser then theoretical reliability. Similarly, the reliability with 4ms is also lesser then the
theoretical reliability. AS shown in Table 3.7, there is only small difference in reliability
with different TICK sizes. So, lesser TICK size is chosen for faster communication. From this
experiment, the Li-Fi communication is significantly reliable within the factory planning
laboratory.

4.1.2 Performance Evaluation

Transmission Time

In this section, the performance of Li-Fi protocol is evaluated based on the transmission
time of frame, throughput and Goodput. Initially, the transmission time is calculated with
different parameters and information frame as shown in Figure 3.2b is used for transmission.
The parameters of Li-Fi protocol to compute the time required to transmit 1B of payload
with overhead are as follows:

• TICK(T) = 3ms and 4ms and 5ms // number of milliseconds per Tick
• CLOCK_HALF(c) = 5 // number of ticks per half clock
• CLOCK(C) = (2 * CLOCK_HALF) //number of ticks per clock (1 bit of data)

The calculation of transmission time for 1B payload is shown below:

𝑇 ∧= 3ms (4.5)

𝑐 ∧= 5 × 3ms (4.6)
∧= 15ms (4.7)

𝐶 ∧= 2 × 𝑐 (4.8)
∧= 30ms (4.9)

1 bit ∧= 30ms (4.10)

⇒ 1B ∧= 8 × 30ms (4.11)
∧= 240ms (4.12)

8B ∧= 8 × 240ms (4.13)
∧= 1920ms (4.14)

The payload data is encoded in the information frame. The frame is composed of 8B
to transmit 1B of payload data. It requires 1920ms from Equation 4.14 to transmit 1B
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Transmission time with different TICK sizes
Payload 3ms 4ms 5ms

1B 1920ms 2560ms 3200ms
2B 2160ms 2880ms 3600ms
3B 2400ms 3200ms 4000ms
4B 2640ms 3520ms 4400ms
5B 2880ms 3840ms 4800ms

Table 4.1: Transmission time for different payloads and TICK sizes

payload including the overhead of information frame. Similarly, the transmission time for
different payloads and TICK sizes are calculated and listed in Table 4.1. From the table, the
graph shown in Figure 4.5 is plotted.
It can be seen that with smaller TICK size the transmission time is less compared higher
TICK size for the same amount of data transmitted. The throughput is calculated from the
time taken to transmit one bit of binary data. From Equation 4.11 time taken to transmit
one bit data is 30ms. The calculation of throughput is shown in below:

1 bit ∧= 30ms (4.15)

𝑇d ≈ 1 × 1 bit
30ms (4.16)

≈ 33.333 bps (4.17)
(4.18)

The throughput(Td) shown in Equation 4.17 is �33.333 bps. Similarly, the throughput with
different TICK sizes are calculated as 25 bps with 4ms TICK and 20 bps for the 5ms TICK.
The Goodput is the actual information transmitted excluding overhead. The Goodput for
different transmission times listed in Table 4.1 is calculated as follows:

𝐺1 B = 1B × 8 bit
1 B

1920ms (4.19)

≈ 4.166 bps (4.20)

Similarly, The Goodput for different payloads are calculated and listed in Table 4.2. The
graph shown in Figure 4.6 illustrates the comparison of Throughput with Goodput. The
Goodput is lesser as the amount of payload data transmitted is lesser then the frame
overhead. The Goodput reaches Throughput when the payload is more.
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Goodput with different TICK sizes
Payload 3ms 4ms 5ms

1B �4.166 bps �3.125 bps �2.5 bps
2B �7.407 bps �5.555 bps �4.444 bps
3B 10 bps �7.5 bps 6.0 bps
4B �12.121 bps �9.090 bps �7.2727 bps
5B �13.888 bps �10.416 bps �8.333 bps

Table 4.2: Goodput for different payload with different tick sizes

One of the performance factor of Li-Fi protocol is throughput which can be increased with
decreasing the TICK size based on this context of implementation. In this thesis the data
transmitted over Li-Fi is smaller then frame overhead. So, the Goodput is significantly less.
In the context, of higher data transmissions the Goodput can reach the Throughput.
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CHAPTER 5

Conclusion

5.1 Summary

The goal of this thesis work was to design a robust wireless communication protocol for
the distributed factory structures in the factory planning laboratory. This was achieved by
setting various objectives. The objectives are the conceptual model of distributed factory
layouts, Li-Fi protocol design, Li-Fi transceiver design, stand-alone factory modules from
scratch, fabrication of component holders and RFID setup.
The conceptual model was designed based on the master-slave principle with modular struc-
tures, as shown in Figure 1.2. Next, the Li-Fi protocol frame format was derived from the
HDLC protocol, Manchester encoding and OOK modulation technique. This protocol was
designed using various functionalities of RIOT-OS. The software implementation was per-
formed using C++ on Arduino-mega 2560 controller board. The Li-Fi transceiver was
designed with LED as a transmitter and LDR as a receiver. The factory modules from Fis-
chertechink [42] are redesigned to convert as stand-alone. 9V batteries are used to power
the modules. RFID based sink selection master node was designed using Arduino-mega
2560 controller and RFID reader. The component holders are designed and printed with
the 3d modelling and Arduino Materia101 3d printer.
Once the entire setup was made ready with all the software and hardware components,
experiments were performed. Based on the experimental results, the Li-Fi communication
protocol was evaluated. The maximum communication distance achieved was 68 cm with
a white LED as transmitter and LDR as a receiver. The maximum reliability is achieved
with the optimal parameters of Li-Fi protocol. The reliability of the communication was
achieved as 99% with the single-hop and 95% with the three hop communication. The
maximum throughput achieved was 33.333 bps with a TICK size of 3ms. The evaluation of
this thesis gives the best practical experience for setting up the distributed factory layouts
in factory planning laboratory.
In summing-up, Li-Fi communication can be adaptable for the factory planning laboratory.
This communication can be implemented in real-time applications. Li-Fi is inexpensive and
the hardware implementation and setup is straightforward. In this thesis the communication
speed achieved is less compared to the actual speed of Li-Fi, which is in terms of GB s−1.
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The speed can be increased with high speed processors. The Arduino-Mega 2560 provides
an ADC clock with �9.6154 kHz which shows the impact on communication speed. But, the
communication speed is sufficient for the factory planning laboratory.

5.2 Future Work

As of now the Li-Fi communication protocol was successfully integrated in factory planning
laboratory. For further research, one can explore in various areas of the proposed field. For
instance, The routing algorithm can be improved by implementing dynamic routing tech-
niques, the communication speed can be increased by choosing a controller which provides
high ADC clock. The error correction and re-transmission of data to make the communi-
cation more robust and efficient, the designed protocol can be extended in the other layers
of OSI model.
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Appendix

A.1 RIOT-OS Setup in Linux Environment

Clone the source repository of RIOT-OS from GitHub repository

Instructions to setup Linux environment with RIOT-OS for Arduino-mega2560 controller:
Install avr-gcc toolchain:
sudo apt-get update
sudo apt-get upgrade all
sudo apt-get install gcc-avr binutils-avr avr-libc
sudo apt-get install gdb-avr

Install avrdude:
sudo apt-get install avrdude

Install directly from the shell:
sudo apt-get install gcc-avr binutils-avr gdb-avr avr-libc avrdude

Include board in bash:
export BOARD=arduino-mega2560

A.2 Building an Application using Makefile

APPLICATION = name of the application
# If no BOARD is found in the environment, use this default:
BOARD ?= arduino-mega2560
# This has to be the absolute path to the RIOT base directory:
RIOTBASE ?= $(CURDIR)/../RIOT-spi
# Comment this out to disable code in RIOT that does safety checking
# which is not needed in a production environment but helps in the
# development process:
DEVELHELP ?= 1
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# Change this to 0 show compiler invocation lines by default:
QUIET ?= 1
USEMODULE += arduino
FEATURES_REQUIRED += periph_spi
FEATURES_REQUIRED += periph_adc
FEATURES_REQUIRED += periph_eeprom
include $(RIOTBASE)/Makefile.include
CXXEXFLAGS += -std=c++11
CFLAGS += -DDEBUG_ASSERT_VERBOSE
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I have used no other means than the ones indicated. I have indicated all parts of the work
in which sources are used according to their wording or to their meaning.
I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a penalty by the law enforcement agency.
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