
FACULT Y OF

COMPUTER SCIENCE

Communication and Networked Systems

Master’s Thesis

Software Updates for the Internet of Things: An
Extension and Evaluation of the SUIT

Implementation in RIOT

Vera Clemens

Matr. 223070

Supervisor: Prof. Dr. rer. nat. Mesut Güneş
Assisting Supervisor: M.Sc. Marian Buschsieweke

Institute for Intelligent Cooperating Systems, Otto von Guericke University Magdeburg

July 01, 2021

Abstract

Firmware updates are essential for the secure operation of Internet of Things (IoT) de-
vices, as several recent examples of uncovered security flaws in IoT device firmware show.
Firmware update mechanisms must fulfil several requirements. Firstly, as IoT devices are
constrained in terms of available computing power, memory, battery power, and network
bandwidth, firmware update processes must be designed with special consideration to these
constraints. Secondly, firmware update mechanisms must be secure; if they are not, they
allow an attacker to exhaust the device’s resources through a Denial of Service (DoS) at-
tack, block the installation of security patches, or even install arbitrary firmware. Thirdly,
ease of use for the IoT device owner must be considered; ideally, it should be possible to
install firmware updates without manual user intervention and they should cause minimal
service downtime. The Software Updates for Internet of Things (SUIT) working group
at the Internet Engineering Task Force (IETF) has published a draft for a standardized
firmware update process that is designed to fulfil these requirements. SUIT has already
been implemented for the IoT operating system RIOT using Constrained Application Pro-
tocol (CoAP) as the application layer protocol to transmit the update. In this work, we first
analyse the requirements for secure software update mechanisms in the context of the IoT
and provide a survey of existing mechanisms. We then design a new transport mechanism
that uses MQTT For Sensor Networks (MQTT-SN) and extend RIOT’s implementation
with it. Finally, we evaluate and compare the transport mechanisms MQTT-SN and CoAP
in a realistic testbed environment with respect to their resource requirements (flash mem-
ory, RAM and energy consumption), network protocol overhead, total update duration, and
their scalability, i.e. ability to update multiple devices in parallel.

Contents

List of Figures vii

List of Tables ix

Listings xi

Acronyms xiii

1 Introduction 1

2 Background: Application Layer Protocols for the Internet of Things 5
2.1 Constrained Application Protocol (CoAP) 5
2.2 Message Queuing Telemetry Transport (MQTT) 7
2.3 MQTT for Sensor Networks (MQTT-SN) 8
2.4 Comparison . 10

3 Related Work 11
3.1 Comparative Evaluations of CoAP, MQTT and MQTT-SN 11
3.2 Requirements for Software Update Mechanisms 14
3.3 Software Update Mechanisms . 17

3.3.1 Software Updates for Internet of Things (SUIT) 17
3.3.2 Others . 21
3.3.3 Comparison . 24

4 Thesis Contribution: A New Transport Mechanism for SUIT Using MQTT-SN 29
4.1 Design . 29

4.1.1 Choice of Application Layer Protocol 29
4.1.2 Design of the Transport Mechanism 29

4.2 Implementation . 32
4.2.1 Choice of MQTT-SN Implementations 32
4.2.2 Implementation of the Transport Mechanism 33

5 Thesis Outcome: Evaluation and Comparison 37
5.1 Setup . 37
5.2 Methods . 39
5.3 Results . 40
5.4 Conclusion . 47

vi

6 Conclusion 49
6.1 Summary . 49
6.2 Future Work . 50

Bibliography 51

Appendix 57
A.1 List of Software Versions Used . 59
A.2 List of Reported Issues and Pull Requests Related to This Thesis 60

A.2.1 Reported Issues . 60
A.2.2 Pull Requests . 60

List of Figures

2.1 The IoT network stack used in this work. 5
2.2 Example CoAP requests and responses. 6
2.3 Example MQTT publish and subscribe messages. 8
2.4 Architecture components used by MQTT-SN. 9

3.1 The components of SUIT’s architecture. 18
3.2 Sequence diagram of a software update using SUIT with a push notification

and CoAP as the transport mechanism. 20

4.1 Sequence diagram of a software update using SUIT with a push notification
and MQTT-SN as the transport mechanism. 31

5.1 Network traffic volume of a full firmware update using SUIT over MQTT-SN
or CoAP. 42

5.2 Duration of a full firmware update over Ethernet using MQTT-SN or CoAP. 43
5.3 Energy consumption of the IoT board during a full firmware update over

MQTT-SN and CoAP. 44
5.4 Duration of a full firmware update over IEEE 802.15.4 using MQTT-SN or

CoAP. 45
5.5 Energy consumption of the IoT board (including transceiver) during a full

firmware update over IEEE 802.15.4 using MQTT-SN or CoAP. 46

List of Tables

3.1 An example SUIT manifest. 19
3.2 Mitigation strategies used by SUIT to defend against different types of at-

tacks on the software update process. 25

5.1 Parameters that influence the results of the evaluation measurements. . . . 38
5.2 Flash memory and RAM usage of the SUIT application using the CoAP or

the MQTT-SN transport mechanism. 41
5.3 Traffic caused by MQTT-SN and CoAP headers. 42
5.4 Number of packets sent during a full firmware update over MQTT-SN and

CoAP. 42
5.5 Average update durations of both wired and wireless updates over MQTT-SN

and CoAP. 45
5.6 Effect of block size increases on average update durations of both wired and

wireless updates over MQTT-SN and CoAP. 46

Listings

4.1 The data structure used to keep track of the current state of the block-wise
transfer over MQTT-SN. 35

Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks. 5–7, 26, 38, 40, 43,
45, 47, 50

AMQP Advanced Message Queueing Protocol. 11

CBOR Concise Binary Object Representation. 19, 26, 41
CoAP Constrained Application Protocol. v, 2, 3, 5–7, 10–14, 20, 21, 26, 30–33, 37–50, 59
COSE CBOR Object Signing and Encryption. 19, 26, 41

DDoS Distributed Denial of Service. 1
DDS Data Distribution Service. 11
DoS Denial of Service. v, 2
DTLS Datagram Transport Layer Security. 24, 34

HTTP Hypertext Transfer Protocol. 5–7, 10, 13, 23, 49

IANA Internet Assigned Numbers Authority. 34
IEEE Institute of Electrical and Electronics Engineers. 37
IETF Internet Engineering Task Force. v, 2, 17
IoT Internet of Things. v, 1–3, 5, 7, 8, 10–18, 20–24, 26, 28–30, 32–34, 37–39, 44, 46,

48–50, 59
IP Internet Protocol. 6
IPv6 Internet Protocol version 6. 5, 26, 38

LwM2M Lightweight Machine-to-Machine. 18, 26, 27

MAC Media Access Control. 47, 48
MAC Message Authentication Code. 19
MIoT Lab Magdeburg Internet of Things Lab. 37, 40, 50
MQTT Message Queuing Telemetry Transport. 2, 3, 5, 7–14, 23, 24, 27, 29, 30, 33, 34, 45,

46, 49, 59

xiv

MQTT-SN MQTT For Sensor Networks. v, 3, 5, 8–14, 29–35, 37–50, 59, 60
MTU Maximum Transmission Unit. 5

NIST National Institute of Standards and Technology. 2

OS Operating System. 3, 15, 22, 23, 38, 59
OTA Over-The-Air. 41

QoS Quality of Service. 7, 8, 10–14, 30

RAM Random Access Memory. 2, 3, 16, 17, 26, 30–32, 35, 37–41, 44, 47, 50
RSMB Really Small Message Broker. 33, 38, 45, 46, 59
RSSI Received Signal Strength Indication. 38, 45
RTT Round Trip Time. 11–14

SUIT Software Updates for Internet of Things. v, 2, 3, 11, 15, 17–29, 31–34, 37–39, 41, 42,
45, 47, 49, 50

TCP Transmission Control Protocol. 5–9, 12–14, 49
TDMA Time Division Multiple Access. 47
TUF The Update Framework. 16, 21, 22, 24–28, 49

UDP User Datagram Protocol. 5, 6, 8, 9, 12–14, 24, 26, 32, 38, 49
URI Uniform Resource Identifier. 6, 19–21, 34, 42

XMPP Extensible Messaging and Presence Protocol. 11

CHAPTER 1

Introduction

In contrast to the standard Internet, where humans are senders or receivers of information,
the Internet of Things (IoT) consists of non-human “things”, e.g. lightbulbs or fridges,
that communicate with each other using Internet protocols. They are usually low-powered
devices with relatively limited memory and computing capabilities. Since the expected
lifetimes of those devices are of considerable length, it must be possible to update their
firmware when bugs or security problems become known. Otherwise, the devices run the
risk of malfunctioning or becoming compromised, especially if they are connected to the
public Internet.
Several cases of security flaws in IoT devices that have become known in the past couple of
years have illustrated why software updates for IoT devices are so important. For example,
in 2016, security flaws were found in IoT surveillance cameras that had been sold in German
and Swiss supermarkets. The cameras came with an insecure default configuration in which
no password is set for the control panel, and automatically set up a port forwarding in the
home router to make their video and audio streams publicly available over the Internet.
A firmware update addressing the vulnerability had actually been available for months at
the time of publication, however, over a third of scanned devices were still vulnerable [1].
In 2020, the so-called “Ripple20” vulnerabilties were found in a TCP/IP implementation
which was used by hundreds of millions of embedded and IoT devices. Some of them allowed
remote code execution. In response to this, an updated version of the implementation was
released; however, it was difficult to identify all of the affected devices, and it was expected
that some of the affected devices cannot or will not ever have their firmware updated [2].
An analysis of firmware images for over sixty different HP printer models found that over
80% of them contained third-party software with known vulnerabilities [3]. Finally, the
Mirai botnet illustrates the magnitude of attacks that are possible using IoT devices. The
botnet was involved in some of the largest known Distributed Denial of Service (DDoS)
attacks ever in 2016. At its peak, it had infected approximately 600,000 IoT and embedded
devices worldwide [4].
These examples make it obvious that software updates are an important part of the op-
eration and maintenance phase in the lifecycle of an IoT device. The need for software
updates for IoT devices is already widely acknowledged. At the time of writing, the most
recent security guidelines published by the German Federal Office for Information Security

2

(German: “Bundesamt für Sicherheit in der Informationstechnik” (BSI)) and the American
National Institute of Standards and Technology (NIST) both list the installation of firmware
updates, especially security patches, as a basic requirement for the secure operation of IoT
devices [5, pp. 3–4][6, p. 9]. The issue has even been acknowledged by European legisla-
ture: In May 2019, the European parliament passed a directive [7] which establishes a new
right for consumers to receive necessary software updates for purchased goods with digi-
tal elements such as IoT devices. The German Federal Ministry of Justice and Consumer
Protection has already published a draft bill implementing the directive [8], which assumes
an average length of five years during which the manufacturer is required to provide these
software updates, starting at the date of purchase.
However, there are several different problems with the current practices for IoT software
updates. Some of them have been noted by Schneier [9], who points out that there are
currently not enough incentives for IoT device vendors to provide software updates, and
that there is no system through which device owners get notified of new software updates.
Furthermore, ease of use and user acceptance must be considered. Currently, some device
owners may lack the expertise required to install firmware updates on their devices. One
survey found that in general, the average user is not likely to immediately install software
updates when prompted, e.g. due to inconvenience or past negative experiences with buggy
updates [10]. It must also be taken care that the software update process itself is secure and
does not introduce new attack vectors, such as installation of a malicious software, rollbacks
of security fixes, and Denial of Service (DoS) attacks that exhaust a device’s resources (e.g.
battery power) by continually attempting illegitimate updates. For example, a vulnerability
was found in the remote firmware update functionality used in HP LaserJet printers that
allowed an attacker to install arbitrary firmware because updates were only authenticated
using checksums and not signed [3]. The printers also did not require any administrator
user authentication; anyone who was allowed to print could also install updates. Even if
cryptographic signatures are used, attackers may compromise the signing keys. For example,
Ronen et al. were able to extract the secret key used to encrypt and sign updates which was
shared by many Philips Hue devices, and use it to sign and install malicious firmware [11].
If combined with another vulnerability in the ZigBee protocol, a worm could then spread
itself from one infected light bulb to others within transmission range.
In answer to these problems, the working group Software Updates for Internet of Things
(SUIT) at the Internet Engineering Task Force (IETF) is currently working on a standard-
ized software update solution for IoT devices. The solution is intended to work even for
constrained devices with as little as ∼10 KiB Random Access Memory (RAM) and ∼100 KiB
flash memory (Class 1 devices [12]). Their efforts focus mainly on standardizing a format
for the software’s metadata (also known as “manifest”), the software update architecture
and the security mechanisms used to prevent attacks. They do not aim to standardize
the mechanisms for transmitting the update to the devices, since IoT device operators are
expected to already have certain infrastructure in place. Thus, SUIT aims to support all
application layer (e.g. Message Queuing Telemetry Transport (MQTT), Constrained Appli-
cation Protocol (CoAP)) and lower layer protocols (e.g. WiFi, IEEE 802.15.4) commonly
used by IoT devices. It must be noted that the majority of the SUIT documents [13, 14, 15]
are still in draft status and SUIT must thus be considered a work in progress.
The aim of this work is firstly to design and implement an extension of the SUIT implemen-

3

taton that is part of RIOT1 [16], an Operating System (OS) for the IoT, which allows it
to use another application layer protocol for update transmission. Prior to this work, only
CoAP is supported. Secondly, the aim is to evaluate resource requirements, communication
overhead and duration of the software update transmission in an IoT testbed. In summary,
the contributions of this work are:

• Analysis and discussion of requirements for secure software update mechanisms in the
context of the IoT

• Survey of other proposed update solutions and comparison with SUIT
• Design and implementation of a new transport mechanism for SUIT using MQTT For

Sensor Networks (MQTT-SN)
• Evaluation of the implementation and comparison of different transport mechanisms

(MQTT-SN and CoAP) in an IoT testbed under realistic conditions
– Resource requirements (e.g. flash memory, RAM, energy consumption)
– Network protocol overhead
– Total duration of the firmware update
– Scalability (updating multiple devices at once)

Thesis Structure The rest of this work is structured as follows: Chapter 2 provides back-
ground information on the IoT networking stack, especially the application layer protocols
CoAP, MQTT, and MQTT-SN. Chapter 3 gives an overview over related works: It contains
a survey of performance comparisons of CoAP, MQTT, and MQTT-SN. It also contains
the discussion of the general requirements of a secure software update mechanism for IoT
devices, a survey on other proposed software update mechanisms in the literature, and fi-
nally a comparison of the different ways in which these solutions and SUIT aim to fulfil the
requirements. Chapter 4 describes the details of our implementation and also contains a
discussion of design choices that were made. Chapter 5 describes the design of our evalua-
tion and its results. Chapter 6 provides a summary and some pointers for future work on
the topic.

1https://riot-os.org/

https://riot-os.org/

CHAPTER 2

Background: Application Layer Protocols
for the Internet of Things

In this chapter, we provide background information on the application layer protocols used
in this work: CoAP, MQTT and MQTT-SN.
Below the application layer, we use a widely used network stack for the IoT that consists
of IEEE 802.15.4, Internet Protocol version 6 (IPv6) and User Datagram Protocol (UDP)
or Transmission Control Protocol (TCP) [17, 18]. Because IEEE 802.15.4 limits the frame
length to 127 B, but IPv6 requires a minimum Maximum Transmission Unit (MTU) of
1280 B, an adaptation layer is required in between.
This is provided by IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN),
which allows the transmission of IPv6 packets over IEEE 802.15.4 by fragmenting them [19].
It also provides compression for IPv6 and UDP headers to decrease overhead and prevent
fragmentation for small payloads [20]. See Figure 2.1 for a visual overview.

2.1 Constrained Application Protocol (CoAP)
CoAP is an application layer protocol for the IoT used to retrieve, update or delete re-
sources [21]. It was designed in the “request-response” style of the Hypertext Transfer
Protocol (HTTP), and uses similar request methods and response codes, e.g. “GET” and

(1) Host-to-Network Layer IEEE 802.15.4

IPv6(2) Network Layer

TCP, UDP(3) Transport Layer

CoAP, MQTT,...(4) Application Layer

6LoWPAN(1.5) Adaptation Layer

Figure 2.1: The IoT network stack used in this work.

6

CoAP
Client

CoAP
Server

CON
GET /suit-manifest

ACK
2.05 <payload>

a) Using confirmable messages: When the client
sends a confirmable GET request for a resource
to the server, the server must acknowledge the re-
quest. Here, it sends the requested resource pay-
load in the same message as the acknowledgment.

CoAP
Client

CoAP
Server

GET /suit-manifest
Block1 Nr 0, More 0, Size 32

2.05 <payload>
Block2 Nr 0, More 1, Size 32

GET /suit-manifest
Block1 Nr 1, More 0, Size 32

2.05 <payload>
Block2 Nr 1, More 0, Size 32

b) Using block-wise transfer: The client requests a
resource block by block. The server responds with
the requested blocks using the requested block
size. The final block is sent with the more bit
unset.

Figure 2.2: Example CoAP requests and responses.

“404 (Not Found)”. Also similar to HTTP, resources are identified by Uniform Resource
Identifiers (URIs), which consist of the following parts:

coap[s]://<host>[:<port>]<path>[?<query>]

The special path prefix /.well-known/ can be used to retrieve site-wide metadata, e.g. a
list of all available resources. For an example CoAP request and response, see Figure 2.2a.
However, in contrast to HTTP, CoAP is more suitable for constrained devices. It does
not require connection establishment prior to the exchange of requests and responses. The
CoAP header can be as small as 4 B, while the HTTP header has a fixed length of 9 B [22,
p. 12]. Additionally, CoAP’s default transport layer protocol is UDP instead of TCP. This is
beneficial for multiple reasons. Firstly, UDP is more lightweight than TCP because it offers
fewer guarantees, e.g. messages are not acknowledged, retransmitted and may be delivered
out of order. Secondly, UDP headers can be compressed by the 6LoWPAN adaptation
layer (from 8 B to 2 B at maximum compression), while TCP headers (20 B) cannot [20,
pp. 17–20]. Finally, TCP’s congestion control mechanism is known to cause performance
issues for wireless and mobile devices [23].
Due to the unreliability of UDP, CoAP itself implements an optional reliability feature using
2 B long message IDs that are contained in every CoAP message. Using this ID, duplicated
messages can be discarded, and so-called “confirmable” messages can be acknowledged by
the receiver. A CoAP message is marked as confirmable in the 2 bit “Type” header field. If
a confirmable message is not acknowledged, it is periodically re-sent after timeout periods
which exponentially increase in length until it is acknowledged or a maximum number of
retransmissions is reached [21, pp. 21 f.].
CoAP messages should fit inside a single Internet Protocol (IP) packet to avoid fragmen-
tation. Therefore, a maximum payload size of 1024 B is recommended [21, p. 25]. To

7

transmit larger amounts of data, block-wise transfer can be used [24]. In lossy networks,
CoAP block-wise transfer is more efficient than 6LoWPAN fragmentation: When at least
one of the 6LoWPAN fragments is still missing after a maximum wait time of 60 s, all other
fragments are flushed and must be retransmitted [19, p. 13], while CoAP blocks are individ-
ually acknowledged and retransmitted. The block sizes of the request and response payloads
are set separately using the “Block1” and “Block2” option, respectively. The block options
each consist of three fields: a block number (4 bit to 20 bit), a bit indicating whether more
blocks are following (“more bit”), and a block size (3 bit). Block sizes of [24, 25, . . . , 210] B
are supported. When the block option is used by a client when requesting a resource, the
server must respond using a block size no larger than the one requested. See Figure 2.2b
for an example CoAP exchange using block-wise transfer.
CoAP also supports so-called cross-protocol proxies, which translate requests and responses
between CoAP and another protocol. Because CoAP is quite similar to HTTP, translation
between CoAP and HTTP can be easily done. This allows IoT devices that communicate
over CoAP to access resources that are served by HTTP servers, and vice versa.

2.2 Message Queuing Telemetry Transport (MQTT)
The MQTT protocol [25] is based on the “publish/subscribe” paradigm, which means that
devices can subscribe to so-called “topics” to receive data that they are interested in, e.g.
living-room/temperature, as well as publish data on a topic. The subscriptions are
managed by a “broker”. When the broker receives published data, it checks which active
clients are subscribed to the topic and forwards it to them. See Figure 2.3 for an example
message exchange between a publisher, a subscriber and a broker. The size of the MQTT
header depends on the message type, e.g. Publish or Subscribe. The Publish header
has a minimum length of 3 B, plus the topic length.
MQTT extends the basic publish/subscribe paradigm with additional features, such as:

Quality of Service (QoS) Data can be published using three different QoS levels:

• Level 0 (“at most once”) does not use any kind of acknowledgements (besides TCP
acknowledgements between the client and the broker).

• Level 1 (“at least once”) additionally uses PubAck messages that are sent by the
receiver (may be either client or broker) upon receiving the message. Duplicates of
the message may still arrive after the PubAck has been sent. They must be treated
like new messages, because the message ID is free for reuse after the message has been
acknowledged.

• Level 2 (“exactly once”) uses a three-step process to ensure reliability and prevent
duplicates: The receiver sends a PubRec (“Publish Receive”) message upon receiving
the message, which lets the sender know to stop storing and retransmitting the mes-
sage. The sender confirms this with a PubRel (“Publish Release”) message, which
lets the receiver know it no longer needs to store the message ID to detect duplicates.
The receiver finally replies with a PubComp (“Publish Complete”).

If PubAck (QoS level 1) or PubRec (QoS level 2) are missing, the message is retransmitted
until it times out.

8

MQTT	Client MQTT	Broker

SUBSCRIBE
living-room/temperature

SUBACK

MQTT	Client
(IoT	Device)

PUBLISH
living-room/temperature	24.2

PUBACK

PUBLISH
living-room/temperature	24.4

PUBACK

PUBLISH
living-room/temperature	24.4

PUBACK

Figure 2.3: Example MQTT publish and subscribe messages: Clients can both subscribe and pub-
lish to topics. The broker forwards all published messages on a topic to the currently
subscribed clients. The success of publish and subscribe actions is indicated using PUB-
ACK and SUBACK messages when using a QoS level > 0.

Wildcard Subscriptions Two different wildcard symbols may be used to subscribe to mul-
tiple topics at once:

• The wildcard symbol # may only be placed on the final level of the subscribed
topic, e.g. living-room/#. It matches the top-level topic and all subtopics, e.g.
living-room, living-room/temperature, living-room/light-status/lamp1 and
living-room/light-status/lamp2.

• The wildcard symbol + may be placed at any level of the subscribed topic, e.g.
house/+/temperature. It matches any single level, e.g. house/living-room/temper-
ature and house/dining-room/temperature.

Retained Messages When the Retain bit is set in a Publish message, the MQTT broker
must store the message and send it to future subscribers of the topic upon subscription. It
is useful when updates on a topic are irregular or infrequent because it ensures that any
subscriber receives an initial value directly after subscribing.
There can be at most one retained message for a topic at any given time. If another message
is published with the Retain bit set, it replaces the previous retained message.
If the QoS level of the retained message is set to 0, it may be discarded by the broker at
any time; if the QoS level is 1 or 2, the semantics of the level must be honored, i.e. the
retained message must be delivered at least once or exactly once to each future subscriber.

2.3 MQTT for Sensor Networks (MQTT-SN)
In the IoT context, one downside of the MQTT protocol is that it can only be operated
using TCP on the transport layer, while UDP is generally preferred for constrained, mobile
and wireless devices, as discussed in Section 2.1. Thus, a second standard called MQTT-
SN [26] was developed specifically for these use cases, which uses UDP instead of TCP. It

9

MQTT Client
(IoT Device)

MQTT-SN
Gateway

MQTT Broker
MQTT

over TCP
MQTT-SN
over UDP

Figure 2.4: Architecture components used by MQTT-SN: In addition to an MQTT broker, MQTT-
SN requires a gateway that translates between its clients, which speak MQTT-SN over
UDP, and the broker, which speaks MQTT over TCP. The gateway may be integrated
with the broker or it may be a standalone component, as shown here.

supports all of the features described in Section 2.2 and the full set of message types defined
by the MQTT protocol, except for Auth messages, which are used for authentication using
challenge/response methods.
In architecture, MQTT-SN can be considered an extension of MQTT. Besides an MQTT
broker, it additionally requires an MQTT-SN gateway, which may be integrated with the
broker or standalone. The standalone case is shown in Figure 2.4.
Besides the UDP support, MQTT-SN offers the following advantages for constrained devices
and wireless networks:

Support for Topic IDs Instead of variable-length topic names, which can cause a large
overhead on top of published messages, MQTT-SN uses 2 B long “topic IDs”. Prior to use,
they must be registered either by the gateway or by the client. Alternatively, MQTT-SN
also supports pre-defined topic IDs which can be used without registration.
Topic IDs can also be used in version 5 of MQTT itself, where they are called “topic aliases”.
However, brokers are not required by the specification to keep using topic aliases when
forwarding messages that were published using a topic alias. This is because publishers
and subscribers are meant to be independent from one another, and thus a publisher’s
decision to use a topic alias cannot automatically carry over to subscribers. As a result,
topic aliases are simply translated and never used for outgoing Publish messages by some
broker implementations such as the widely used Mosquitto.1

Server/Gateway Discovery Gateways may periodically broadcast Advertise messages to
allow clients to keep an updated list of online gateways. Additionally, clients may broadcast
SearchGw messages to let others in the network know that they are looking for a gateway.
Gateways or other clients may respond to this using a GwInfo message, which includes
the address of an available gateway.

Keep-Alive for Sleeping Clients A client may let the gateway know that it is about to
enter a sleep state by setting the “Sleep Duration” field in the Disconnect message. For
that duration, the gateway will buffer packets on subscribed topics and deliver them when
the client next comes back online and sends a PingReq to the gateway. After sending all
buffered packets, the gateway answers the ping and the client may go back to sleep.

1https://github.com/eclipse/mosquitto
At the time of writing, the issue of using topic aliases for outgoing Publish messages in Mosquitto

is being discussed (see https://github.com/eclipse/mosquitto/issues/1757 and https://www.eclipse.
org/lists/mosquitto-dev/msg02505.html) and the feature is planned to be added in an upcoming version
(see https://github.com/eclipse/mosquitto/commit/de9780343b09d2d2d1c2bda6f2747c961e2fa2c1).

https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto/issues/1757
https://www.eclipse.org/lists/mosquitto-dev/msg02505.html
https://www.eclipse.org/lists/mosquitto-dev/msg02505.html
https://github.com/eclipse/mosquitto/commit/de9780343b09d2d2d1c2bda6f2747c961e2fa2c1

10

A similar feature is also included in MQTT: If the “Clean Start” flag in the Connect
message is set to zero, a persistent session is started. After it ends, the broker will continue
buffering messages on the client’s subscribed topics and deliver them when the client next
connects. However, this is only mandatory for messages with QoS > 0, and the Connect
procedure is less lightweight than the PingReq procedure.

QoS Level -1 Clients may publish messages without any previous connection setup with a
gateway using the QoS level -1. This offers even less assurances than QoS level 0, because
it is unclear whether the gateway adress is correct or the gateway is still online. However,
this also saves the overhead of connection setup and teardown.

2.4 Comparison
In this section, we discuss advantages and disadvantages of CoAP, MQTT and MQTT-SN
based on the protocol specifications which we briefly described in the previous sections. For
an overview over performance comparisons of CoAP, MQTT and MQTT-SN implementa-
tions, see Section 3.1.
The publish/subscribe model used by MQTT and MQTT-SN has some advantages over
the request/response model used by CoAP. As mentioned, MQTT and MQTT-SN can
easily support sleeping devices by buffering packets at the broker. Additionally, the broker
simplifies one-to-many or many-to-many communication between larger numbers of IoT
devices, since they do not need to know each others network addresses to communicate,
only the broker’s network address. It must be noted that a publish/subscribe extension for
CoAP exists [27], but it is still in draft status and thus has not been widely implemented.
Currently, another advantage of MQTT over CoAP is that it has a larger user base [28,
pp. 38 f.]. There is no data on the number of users of MQTT-SN, but it can be assumed that
it is the least used out of all three protocols. This is reflected in a much lower number of
MQTT-SN implementations available, which also receive much lower contribution activity.
For a short overview of available MQTT-SN implementations, see Section 4.2.1.
In summary, MQTT and MQTT-SN are most suited for the exchange of small amounts
of current information such as sensor data in many-to-many fashion. MQTT-SN is more
suitable for wirelessly connected constrained devices than MQTT, but it has a much smaller
user base and lacks well-maintained software support. CoAP is most suited for the transfer
of data of any size from servers to clients. Especially the transfer of large amounts of data
is well-supported through the block-wise transfer option. It also provides interoperability
with other protocols used in the wider Internet using cross-protocol proxies, most notably
for HTTP.

CHAPTER 3

Related Work

In this chapter, we present and discuss related works. The first section presents an overview
over previous comparative evaluations of the two application layer protocols CoAP and
MQTT. The second section describes general requirements for secure firmware update so-
lutions. The third section presents an overview over works describing firmware update
mechanisms, including SUIT, and finally compares how they fulfill the requirements.

3.1 Comparative Evaluations of CoAP, MQTT and MQTT-SN
The performance of application layer protocols for the IoT has been evaluated and compared
by several authors using several different metrics. This section gives an overview.
A similar survey of evaluations of application layer protocols, which includes not only CoAP
and MQTT, but also Data Distribution Service (DDS), Advanced Message Queueing Pro-
tocol (AMQP) and Extensible Messaging and Presence Protocol (XMPP), was published
by Dizdarević et al. [29] Unfortunately, MQTT-SN is not included in their survey.
It must be noted that not all performance differences measured can be ascribed to the
protocols themselves. The specific implementation used obviously also has an impact on
the measured performance. For example, a comparison of different CoAP implementations
by Iglesias-Urkia et al. found significant differences in Round Trip Time (RTT), CPU and
memory usage between them, even when they were implemented in the same programming
language [30].

Transmission times

The message transmission time, delay or RTT is a well-studied metric that is included in
most evaluations. Several of them find that MQTT performs better than CoAP, especially
when packet losses and retransmissions occur:
Thantharate et al. measured the transmission duration of five consecutive messages in a
simulated IoT testbed. Their results show that the average transmission time of MQTT
messages with both QoS level 1 or 2 is at least three times as fast as that of CoAP con-
firmable messages. MQTT with QoS level 2 is slightly slower than QoS level 1 due to the
increased acknowledgement overhead. However, it is unclear what causes the measured

12

time differences. By default, CoAP uses a stop-and-wait protocol which allows only one
outstanding request or unacknowledged message at a time, while MQTT runs over TCP,
which uses a sliding window protocol with larger window sizes. CoAP may have achieved
better transmission durations if it was also configured to use larger window sizes.
Similarly, Bideh et al. measured transmission times and found that MQTT is up to seven
times as fast as CoAP [31]. They state this is because TCP uses a more efficient retransmis-
sion algorithm which uses RTT measurements, while CoAP uses an arbitrary fixed value
range (between ACK_TIMEOUT and ACK_TIMEOUT · ACK_RANDOM_FACTOR) for its acknowledg-
ment wait timeout. Thus, TCP can trigger a first retransmission faster than CoAP when
the network RTT is low. The effect can be lessened by decreasing the ACK_TIMEOUT param-
eter. However, even when decreasing it to the minimum of 1 s, they find that CoAP still
performs worse than MQTT.
Collina et al. also found that MQTT performs with lower latencies when there is high
packet loss [32]. They also state that this is because of TCP’s faster retransmissions.
Like Bideh et al., they were able to improve the performance of CoAP by lowering the
parameters ACK_TIMEOUT and ACK_RANDOM_FACTOR. With these tuned parameters, CoAP
achieves a performance similar to MQTT. However, the lowered parameters cause risk
of unnecessary retransmissions, which may congest the network. RFC 7252 states that
additional congestion control mechanisms must be used if ACK_TIMEOUT is decreased from
its default value [21, p. 28].
Two evaluations consider the transmission of larger amounts of data. Bideh et al. measured
transmission durations for a large file (870 KiB), which is transmitted in 870 blocks when
using CoAP and in a single message when sent over MQTT [31]. In this case, MQTT is
twice as fast. Mun et al. performed time measurements of the transmission of 50 kB large
messages using different block sizes from 128 B to 1920 B and found that MQTT performs
better for large block sizes of more than 1024 B because there is less fragmentation [33].
When sent over CoAP, these blocks are fragmented twice due to its limited payload size.
These results show that fragmentation has a negative impact on transmission durations.
In some cases, CoAP performs similar to or even better than MQTT. In the evaluation by
Mun et al., CoAP performs better than MQTT when messages are smaller than 1024 B [33].
Collina et al. find that when there is low packet loss, MQTT and CoAP perform the
same [32]. Mijovic et al. also found that CoAP and MQTT with QoS level 0 achieve very
similar RTTs, but MQTT with QoS 1 is slowed down by the additional application layer
acknowledgements by a factor between 2 and 3 [34].
In their survey, Dizdarević et al. also found that the transport layer protocol is a major
factor for performance, and that TCP-based protocols often achieve worse latencies in
evaluations than the UDP-based ones [29]. Larmo et al. found in network simulations
that MQTT messages arrive with increased delays when the TCP session is terminated in
between messages due to TCP’s three-way handshake [35]. They also found that if the IoT
device’s radio is periodically turned off to conserve energy (“duty cycling”), a minimum
delay is added to each transmission originating at the device, especially if it is using TCP,
because it cannot receive downlink messages such as the TCP Syn Ack of a connection
establishment until it is awake again.
MQTT-SN is not included in many evaluations. Gündoğan et al. compared it against

13

CoAP [36] using ARM Cortex M3 nodes in the FIT IoT testbed [37]. They found that with
a push/pull interval of 5 s, the push-based CoAP Put and MQTT-SN Publish do not differ
significantly in the time required for the transmission, whereas the pull-based CoAP Get is
slightly slower. With a shorter push/pull interval of 50 ns, the delays for confirmable CoAP
Put messages increase significantly due to application layer retransmissions. CoAP Get
and MQTT-SN Publish messages do not experience significantly decreased delays. In the
evaluation by Mun et al., MQTT-SN performs the worst overall; however, they note that
this may be due to the low level of maturity of the implementation used (Eclipse Paho) [33].

Energy consumption

Dizdarević et al. found that CoAP is more energy-efficient than MQTT in all surveyed
comparisons, though both are more efficient than non-IoT-specific protocols like HTTP.
Larmo et al. also found in their network simulations that MQTT causes more energy
consumption than CoAP due to the increased amount of radio transmission time caused by
TCP overhead such as the three-way-handshake [35].
Bideh et al. transmitted payloads of different sizes and found that CoAP consumes slightly
less energy for payloads of up to 1024 B since the overhead of connection setup is the
dominant factor for such small payloads [31]. They conclude that data should be aggregated
as much as possible to minimize energy consumption, since more frequent transmissions of
small payloads are costly, especially when the communication setup and teardown need to
be performed every time. For larger payloads, CoAP consumes significantly more energy
than MQTT, again due to the fragmentation.
In the comparison of CoAP, MQTT and MQTT-SN done by Mun et al. [33], the energy
usage measurements are highly similar to the total transmission times measured, which
means that as described before, CoAP performs the best, except for large messages of
more than 1024 B, where MQTT performs better due to less fragmentation, and MQTT-
SN performs the worst overall. Mun et al. also find that the energy usage of all three
protocols is heavily influenced by the network conditions (e.g. jitter and RTT): The worse
the network conditions are, the more energy they consume.

Traffic overhead

Obviously, the traffic overhead incurred by headers and control traffic increases with the
QoS level for MQTT. For CoAP, it increases when confirmable messages are used. In their
survey, Dizdarević et al. found that CoAP consumes less bandwidth than MQTT in all
surveyed comparisons. Our survey arrives at the same result. Unfortunately, MQTT-SN is
not included in any overhead evaluations.
Chen et al. found that MQTT sends approximately 76 B of header and control data for every
100 B of payload, while CoAP sends only approximately 36 B for every 100 B of payload
when using non-confirmable messages [38]. This increased overhead of MQTT is probably
due to the control messages that are necessary before actually transmitting any payload,
i.e. the Connect and ConnAck messages.
Mijovic et al. also found that CoAP has less protocol overhead than MQTT (both QoS 0
and 1), because the UDP header is smaller and there are no transport-layer acknowledg-
ments [34]. When transmitting 100 B of payload, the payload makes up more than 30 % of

14

transmitted bytes when using CoAP, but less than 20 % of transmitted bytes when using
MQTT.

Packet loss rates

Chen et al. found that MQTT experiences no packet loss even in lossy network conditions at
the cost of increased latency for the received packets and increased control traffic overhead,
while CoAP experiences packet loss rates approximately equal to the network packet loss
rate [38]. This is not surprising, since lost MQTT messages will be retransmitted by TCP
even when QoS level 0 is used, while the UDP-based CoAP does not retransmit packets
by default. Unfortunately, they have not included CoAP’s confirmable messages in their
evaluation.
Gündoğan et al. also found in their measurements in the FIT IoT testbed that with a short
transmission interval of 50 ms, significant packet loss occurs for non-confirmable CoAP
messages, while confirmable CoAP and MQTT-SN PUBLISH messages did not experience
packet loss because missing packets could be successfully retransmitted.

Conclusion

In conclusion, MQTT’s largest downside when compared to CoAP appears to be the over-
head caused by TCP due to the required connection setup and teardown and its larger
header size. This overhead can lead to increased message transmission durations, en-
ergy consumption and traffic overhead, especially when the connection is re-established
frequently. However, TCP also offers some advantage against CoAP, namely through its
sliding window protocol compared to CoAP’s stop-and-wait and its faster retransmissions.
This gives MQTT an advantage especially in environments with high packet loss, where
retransmissions are frequent. However, CoAP’s approach is more suitable for constrained
devices, because it does not require to keep RTT measurements or to support multiple
simultaneously outstanding acknowledgments.
MQTT-SN is unfortunately not included in many evalutions. Gündoğan et al.’s results
suggest that it offers a performance similar to CoAP. However, further evaluation is needed.
As Mun et al. noted, the lacking maturity of implementations that are currently available
may also negatively impact MQTT-SN’s performance results.
Several evaluations note the negative performance impact of fragmentation. Here, CoAP
is disadvantaged because it has a much lower maximum payload size than MQTT (1024 B
vs. ∼256 MB) and therefore forces more fragmentation at the application layer. However,
CoAP’s maximum payload size is much more realistic for constrained devices and networks
and thus, in practice and for a fair comparison, MQTT should also be limited to a similar
payload size.

3.2 Requirements for Software Update Mechanisms
In this section, we survey requirements that apply to all secure software update mechanisms.
First, we must clarify terminology, particularly the difference between the terms “firmware
updates” and “software updates”. “Firmware update” refers to the complete replacement of
a device’s entire software, while “software update” refers more generally to the replacement

15

of some part of a device’s software with a newer version. It is less specific to the IoT
or embedded context and also describes the update of a package on a Linux system, for
example. Currently, most constrained IoT devices use full firmware updates only, however,
it has been suggested that IoT software may become less monolithic in the future, so that
different parts of it will need to be updated independently [39].1 Smaller update sizes would
also reduce network traffic and therefore the update duration and energy consumption [41,
42]. Thus, we use the more general term “software update” throughout this work where it
is possible, as the SUIT standard drafts also do.
We now present a list of security requirements for software update mechanisms based on
a survey of several other works. Firstly, the general information security principles of
confidentiality, integrity, availability, and authenticity, which are named in the ISO 27000
standards series as the defining aspects “information security” [43, p. 4], apply to firmware
update mechanisms:

Confidentiality It must be possible to encrypt both the software image and the metadata
to ensure its confidentiality and prevent “read attacks”. Attackers may use unencrypted
images for reverse-engineering.

Integrity of the Image and Metadata The integrity of the software itself and its metadata
must be verified. The device must check the integrity of the firmware update, i.e. that the
update has not been tampered with along the way from the source to the IoT device.

Availability of the Updated Device An IoT device usually provides some service using its
sensors and actuators. A software update usually requires a device to reboot and thus
temporarily disrupts this service. It must be possible to schedule updates so that the
availability of the service is not disrupted at critical times. The update process should also
include fail-safes, e.g. for the case when a firmware update turns out to be invalid after it
is received or the reboot fails [44].

Authentication and Authorization of the Update Source The update source must be au-
thenticated and authorized. No unauthenticated or unauthorized source should be able to
initiate a firmware update of a device. This can be done using cryptographic signatures,
for example. Trust anchors or keys used by the device to perform the authentication may
expire or change so that it is necessary to update them [45, 46]. Ideally, the device manu-
facturer or vendor should not be the only authorized source [3], so that the devices do not
become obsolescent when they are no longer actively supported by the manufacturer or the
manufacturer shuts down [47], which is undesirable both from a customer’s and from an
ecological perspective.
Samuel et al. define a set of principles that make a software update system resilient against
attacks when a subset of signing keys has been compromised [48]. Firstly, there should
be separation of responsibilities over multiple keys so that the attacker’s power is limited
when a key is compromised. Secondly, signatures using multiple keys should be required.
Thirdly, it must be possible to revoke keys. Keys may also be automatically revoked after
a certain amount of time or number of uses to encourage frequent replacement. Finally,
keys used for very security-sensitive purposes should be stored on systems not connected

1For example, the embedded OS Tock (https://www.tockos.org) uses a non-monolothic approach. It
separates the core OS from (third-party) applications that are dynamically loadable at runtime [40].

https://www.tockos.org

16

to the public Internet or not connected to a network at all. To prevent key compromises
in the first place, widely trusted cryptographic algorithms and large key sizes should be
used. They also identify the information that must be authenticated by a software update
mechanism: the content of the updates, the availability of the updates, and the repository
state (i.e. software versions available). They applied these principles in the design of The
Update Framework (TUF), which is described in Section 3.3.2.
Secondly, there are security requirements related to the specific potential weaknesses of
software update mechanisms. Some cases of such weaknesses were already described in
Chapter 1. Cappos et al. classify several types of attacks on software repositories [49]:
replay attacks (resending older versions), arbitrary package attacks (sending a different
software than requested), freeze attacks (freezing the version a client sees and preventing
updates)2, extraneous dependency attacks (inserting additional dependencies that must be
satisfied), and endless data attacks (sending endless amounts of data instead of the software
image). These attack types can be carried out when an attacker compromises a software
repository, i.e. is able to respond to client requests with arbitrary data, but they do not
require a signing key to be compromised. Cappos et al. suggest that extraneous dependency
attacks can be mitigated by signing update metadata which contains the dependency list,
and replay attacks can be mitigated by including a timestamp in the software metadata
that must not be older than the timestamp of the currently installed software. Endless data
attacks can be mitigated by placing a cap on the maximum amount of data downloaded.
To detect freeze attacks, they recommend to use signed root metadata files that contain
hashes of all package metadata files served by the repository. The files are small, so they
can have short expiry times and be updated and resigned frequently [49].
Karthik et al. describe further types of attacks [51]: read attacks (reading contents of
firmware updates, e.g. to reverse-engineer), slow retrieval attack (slowing down transmission
of firmware updates to exploit vulnerabilities in the meantime), and drop-request attacks
(blocking network traffic of firmware updates).
In addition to replay attacks, an attacker may also send an outdated software version that
is newer than the currently installed version, but still not the latest available one [15, p. 18].
Langiu et al. call this the “update freshness” property [52], which must be ensured.
Finally, there are also some usability requirements that should be met by a software update
solution:

Suitability for Constrained IoT Devices An attempt at a definition of the term “con-
strained device” has been made in RFC 2778 [12]. According to this RFC, devices can
be “constrained” in the sense of limited amount of flash memory, RAM, processing power,
available (battery) power or accessibility once deployed. Additionally, the networks to which
they are connected may themselves be constrained in some way, e.g. by low throughput or
high packet loss rates.
The software update mechanism must adhere to these constraints. It cannot require mem-
ory or processing power exceeding the capabilities of constrained devices. It should have
minimal energy consumption, which means that the network traffic and the total processing
and transmission time spent on the update should be minimized [53, 42].

2This type of attack was also previously described by Bellissimo et al. [50]

17

Additionally, IoT devices are sometimes installed in inaccessible locations. Therefore, soft-
ware updates must be possible over wireless connections [53, 42]. Devices may also not be
constantly connected to a network if they are mobile. In these cases, pull-based approaches
are preferable over push-based approaches [50].

Minimal User Interaction Software updates are expected to work automatically, i.e. with
minimal or even no user involvement or attendance [13, 39, 9, 44]. Some types of IoT devices
may not be able to ask for confirmation because they lack an appropriate user interface [50].
However, there are several reports of IoT devices losing certain functionalities or even being
bricked after installing software updates [54, 55, 56]. Also, software updates may include
“breaking” changes. A software update that changes the behaviour and output of an IoT
device, e.g. the format of the sensor data it reports, may break systems that rely on this
output down the line [45, p. 18]. Therefore, it must be possible to turn off automatic
updates.

Targeting Subsets of Devices It should be possible to limit the installation of a firmware
update to a certain subset of devices [42, 44]. Most obviously, a firmware should only
be installed on the devices with the matching type of hardware. Additionally, updates
may be targeted using other device attributes, such as location or group (e.g. test or
production devices). Some use cases may additionally require that the update mechanism
ensures atomicity, i.e. that either none or all of the targeted nodes successfully install an
update [41, 42].

Monitoring It should be possible to monitor the state of the IoT devices, including at
least their currently installed firmware version and whether an update was successful or
not [44, 45].

Partial or Differential Updates As discussed before, an IoT device’s software may be mod-
ular. In that case, the software update mechanism needs to support partial updates, which
may be installed e.g. using dynamic linking. Also, differential updates may be desirable to
minimize the network traffic [41, 45].

3.3 Software Update Mechanisms
In this section, we describe the design of several existing software update mechanisms,
starting with SUIT. We focus primarily on update mechanisms designed for constrained
devices. We specifically examine if and how they meet the requirements described in the
previous section.

3.3.1 Software Updates for Internet of Things (SUIT)

The SUIT working group at the IETF aims to standardize a secure software update mech-
anism for constrained devices with as little as ∼10 KiB RAM and ∼100 KiB flash memory
(Class 1 according to RFC 7228 [12]). This would lower development costs for IoT device
vendors, who would no longer need to design and implement their own update mechanism,
and ensure a certain level of quality. The SUIT documents specify a format for update man-
ifests, the update architecture and the update process including the security mechanisms

18

IoT	Device

Firmware

Server

Status	Tracker

Server

Firmware

Author

Firmware

manifest

and	image

Status

queries

Status

updates

Firmware

manifest

and	image

Figure 3.1: The components of SUIT’s architecture: Besides the IoT device itself, a firmware and a
status tracker server are required. The firmware server serves the software and manifests,
while the status tracker server triggers and monitors updates.

used. Transport mechanisms, status tracker functionality and discovery mechanisms for sta-
tus trackers and software repository servers are explicitly not standardized, because they
may be implemented in various ways using already existing protocols, e.g. the Lightweight
Machine-to-Machine (LwM2M) protocol for IoT device management. SUIT is not limited to
full firmware updates. It supports the updating of arbitrary data, including partial software
updates, configuration data, or cryptographic keys [13, p. 3].
Although SUIT is still a work in progress, there is significant interest in its early support,
e.g. from the many researchers using RIOT [57], the open-source IoT operating system used
in this work. An implementation of SUIT was added to the RIOT code base in October
20193. SUIT was chosen for integration over other software update mechanisms because
RIOT focuses on providing support for open, standard-based protocols and specifications.

Update architecture

The SUIT architecture consists of three components [13, pp. 7 f.]. It is shown in Figure 3.1.
Firstly, there is the IoT device itself. It has one or more microcontrollers with associated
bootloaders whose software may be updated. The device’s software must implement update
functionality which allows it to interact with the tracker and firmware servers, parse and
verify the firmware manifest and store the downloaded firmware image. Secondly, there
is the firmware server, which stores and distributes the firmware manifests and images.
Finally, there is the status tracker server. It notifies devices of new firmware versions and
receives status information from the devices (e.g. current firmware version, available flash
memory). It can trigger a firmware update in a device. The firmware and the status tracker
servers may be co-located on the same machine.

3https://github.com/RIOT-OS/RIOT/pull/11818

https://github.com/RIOT-OS/RIOT/pull/11818

19

Update manifest format

SUIT manifests contain metadata about an update. Their structure is defined in the stan-
dard draft describing the manifest4 [14], while the manifest fields are defined in the in-
formation model [15]. In total, the draft defines 24 manifest fields, seven of which are
mandatory to include, such as a sequence number and a storage location. See Table 3.1 for
an example manifest which was generated using the manifest generator tool that is included
in RIOT.5 The SUIT manifest also contains command sequences which describe how the
receiver should process the manifest. Commands are either conditions that must be true
or directives that must be executed. They are available for all processing steps usually re-
quired by an update process, i.e. signature and digest verification, parameter comparisons,
fetching, copying and transformation of data, and code execution.
The manifests are encoded using Concise Binary Object Representation (CBOR), a binary
data format specifically designed to generate small messages and require only little code to
parse and generate [59], and are authenticated using CBOR Object Signing and Encryption
(COSE) [60]. They are distributed in a container called the “SUIT Envelope” alongside an
authentication wrapper containing one or more COSE signatures or Message Authentication
Codes (MACs). When using the RIOT SUIT tool6 to generate the signed version of a
manifest, a single COSE signature of the hash of the manifest is added to the authentication
wrapper.

Update process

The SUIT update process consists of the following steps [13, pp. 9–11]:

Table 3.1: An example SUIT manifest.

Field name Description Example
Manifest Version ID Version of the manifest format used. 1
Manifest Sequence
Number

Monotonically increasing sequence number,
e.g. UTC timestamp.

1603813981

Vendor ID Unique device vendor ID. riot-os.org
Class ID Class of devices that can accept the update. nrf52dk
Image Size Size of the update image in bytes. 85488
Offset Storage offset in bytes. 8196
Image Digest Hash digest of the update image. f5ff..., SHA256
URI Location from which the update image can

be fetched.
coap://[2001:db8::1]/
fw/nrf52dk/update-
slot1.riot.bin

4At the time of writing, version 12 of the draft is the most current one, however the RIOT implementation
of SUIT is still based on version 9 [58]. The changes to the manifest structure between the two versions are
only minor, so that the description here applies equally to both.

5https://github.com/RIOT-OS/RIOT/tree/master/dist/tools/suit/suit-manifest-generator
6https://github.com/RIOT-OS/RIOT/tree/master/dist/tools/suit/suit-manifest-generator/

suit_tool

https://github.com/RIOT-OS/RIOT/tree/master/dist/tools/suit/suit-manifest-generator
https://github.com/RIOT-OS/RIOT/tree/master/dist/tools/suit/suit-manifest-generator/suit_tool
https://github.com/RIOT-OS/RIOT/tree/master/dist/tools/suit/suit-manifest-generator/suit_tool

20

Firmware
Author

Firmware
Server

Upload Manifest
+ Image

Status Tracker
Server

IoT Device

Notify
CoAP POST

/suit/trigger coap://...

CoAP GET /manifest

Validate
manifest

CoAP ACK ...

Proceed with
installation

CoAP ACK

CoAP GET /image

CoAP ACK ...

(Repeat until all blocks are transferred)

(Repeat until all blocks are transferred)

Figure 3.2: Sequence diagram of a software update using SUIT with a push notification and CoAP
as the transport mechanism: The status tracker server pushes an update notification to
the device using a Put request. The device then downloads manifest and image using
block-wise Get requests.

1. A new software update is uploaded to the firmware server by an authenticated and
authorized source. The status tracker server is made aware of this.

2. The IoT device is notified of the newly available firmware image using a push-based
approach, where the status tracker server pushes a notification to the device, or a
pull-based approach, where the device periodically polls the status tracker server for
available firmware images.
The update manifest and image are transported from the firmware server to the
device via an unspecified transport mechanism. Multicast or broadcast protocols may
be used to efficiently distribute them to multiple devices at once.
The device validates the firmware manifest’s signature to authenticate the update’s
source. The manifest and the image can either be transported separately, or the image
can be embedded into the manifest. As described above, the manifest contains the
software’s URI and an associated fetch command. If they are transported separately,
the device can validate the manifest before starting the download of the image, and
abort the update process if the manifest fails any check. The image is stored at the
storage location specified in the manifest, e.g. at a certain flash memory offset.

3. Once the firmware image is downloaded, the installation may be initiated in one of
the following ways:

• The client immediately proceeds with the installation.

21

• The client delays the update until a certain condition is met (e.g. a certain time
of day, battery level or until the device operator accepts [14, pp. 56–60]).

• The client waits for a trigger by the status tracker server.

The bootloader then boots from the new firmware image.
4. While the firmware update process is ongoing, the status tracker server tracks its

progress, e.g. whether the update is in progress, successfully completed, or failed
(and why).

See Figure 3.2 for the sequence of messages that are sent when CoAP is used as the transport
mechanism. It shows how the current implementation of SUIT in RIOT works. As can be
seen, a CoAP Post request is used by the status tracker server to inform the IoT device
of the newly available update. The URI of the firmware manifest is transmitted within the
payload of this request. The IoT device then pulls the manifest and the update itself from
the firmware server using block-wise Get requests.

3.3.2 Others

In this section, we provide an overview over other proposed software update mechanisms,
focusing primarily on mechanisms designed for constrained devices. Finally, we compare
them to SUIT.

The Update Framework, Uptane and ASSURED

TUF is a framework for software update retrieval. It authenticates updates using crypo-
graphic signatures and was designed to be able to survive the compromise of some of its
signing keys using the four principles already described in Section 3.2. It was first described
by Samuel et al [48], and is now a part of the Linux Foundation’s Cloud Native Comput-
ing Foundation and in productive use at several companies.7 The protocol specification
is openly available [61]. TUF uses four different metadata files: root.txt (keys of root
role and roles delegated by root), release.txt (latest versions, hashes and lengths of all
metadata files except timestamp.txt), timestamp.txt (version, hash and length of latest
release.txt), and targets.txt (available update files including hash digests, file size and
optionally, custom information such as version or dependencies). Each metadata file has
at least one associated role with a signing key that is only responsible for signing that file.
Multiple signatures may be required. There can also be multiple hierarchical targets.txt
files and keys, e.g. for update files provided from different sources. All metadata files also
have an expiration time.
When downloading an update, the first step of TUF is to get the latest release.txt as
specified by timestamp.txt and to check its length and hash. If release.txt indicates
that a new root.txt is available, TUF starts over. If release.txt indicates that a new
targets.txt is available, TUF updates its list of available files using the new version.
When TUF is instructed by an upper software update layer to fetch one of the available
files, it does so and checks its hash and length against the ones given by the targets.txt
before returning the file.

7https://theupdateframework.io

https://theupdateframework.io

22

Thus, the targets, release and timestamp roles share responsibility over the available update
files so that all three must be compromised to allow an attacker to get a client to install
malicious software. Freeze attacks are possible once the timestamp key is compromised
because it allows an attacker to continually resign a frozen version of timestamp.txt. This
prevents the release of a new release.txt and thus also of a new targets.txt or root.txt.
However, the duration of the freeze attack is limited by the earliest expiration date of the
other metadata files. Once the attack is noticed, the timestamp key can be replaced. Only
a compromise of the root key(s) would be completely fatal to the system’s security, because
the attacker can sign a new root.txt containing his own keys for the other roles.
TUF was not designed for constrained devices, and it is not well-suited for them. It re-
quires the updated device to choose which updates to install, to resolve dependencies and to
validate multiple cryptographic signatures. Thus, update mechanisms based on TUF have
been proposed that outsource these tasks to other components, e.g. ASSURED [62] and
Uptane [51]. ASSURED extends TUF with a “controller” component which communicates
with the repository on behalf of the constrained device, and takes on the tasks listed above
and then transmits the update to the constrained device over a secure channel. The device
only needs to confirm the authenticity of the controller and the constraints given in the up-
date metadata, e.g. device class. Similarly, Uptane, which was created especially to update
electronic control units (ECUs) in automobiles, adds a “director” role that is responsible
for creating and signing a list of softwares to be installed specifically when an automobile
requests updates. Due to the heterogeneous levels of constrainedness of the ECUs, one of
them is chosen to be the primary who communicates directly with the director and per-
forms the checks, and then distributes the software to all secondaries. Uptane’s design also
includes several other changes, such as an external time server which ECUs periodically
contact with a nonce. The time server returns the signed current time and nonce. This is
necessary because TUF requires the updated system to have an accurate clock to make use
of the expiration timestamps. Uptane also uses an A/B slot system to ensure that there is
always a bootable image available.

UpKit

With UpKit, Langiu et al. propose a software update mechanism that is supposed to be
lightweight, efficient, open-source, and not dependent on any specific network protocol,
hardware platform or OS [52]. Their goals therefore align quite closely with those of SUIT.
Langiu et al. provide implementations for three different OSs (RIOT, Contiki-NG, and
Zephyr) and multiple hardware platforms.8

UpKit’s infrastructure consists of a vendor server, update server, and update client in the
IoT device. The vendor server pushes new firmware images and signed metadata (the so-
called “manifest”) to the update server. The manifest contains the firmware version, size,
hash, offset, and application and hardware platform ID. The update server announces the
new version’s availability. The update client can then send a request for it, including its
device ID and a nonce. The update server appends the nonce to the update metadata, signs
it and sends it to the update client. Using the nonce (if it is sufficiently random [63]), the
freshness of the information is guaranteed. Unlike SUIT, they prefer nonces over timestamps
because secure time sources are usually not available to IoT devices, and expiry timestamps

8https://github.com/updatekit/upkit

https://github.com/updatekit/upkit

23

may be set too far in the future. Once the update client receives this information, it verifies
both signatures and the metadata, such as the firmware version. If all checks are successful,
the image is downloaded and its hash is compared. Finally, the image can be booted. UpKit
supports the usage of flexible memory slots for update installation, e.g. A/B slots.

FiGaRo

Mottola et al. specify a software reconfiguration process for wireless sensor networks called
FiGaRo (FIne Grained SoftwAre RecOnfiguration) [42]. It is implemented on top of the
Contiki OS. In FiGaRo, the node software is structured into components that have interfaces
(i.e. services they provide), dependencies on other components, and a version. Interfaces
are represented as structs containing function pointers which always point to the imple-
mentation that is currently used. A management layer at the node keeps a representation
of the current software configuration’s dependency tree. When a new component arrives
at the node, it checks whether all dependencies are satisfied. If they are, the component
is installed and run if there is either no other component already implementing the same
interface or the component that is currently installed has an older version. Components are
replaced using dynamic linking. The component updates are limited to a subset of nodes
using node attributes: First, each node’s attributes must be declared (e.g. its hardware).
They are piggybacked onto each outgoing message, overheard by all nodes in range, and
used to build a mesh routing table that contains node attributes. Then, the target of the
component update can be declared as a boolean function of the attributes (e.g. Board ==
NUCLEO-F767ZI && Battery >= 75).

Others

Frisch et al. present a software update mechanism for ESP8266-based IoT devices [44].
They use an infrastructure consisting of a firmware repository, a home automation con-
troller and several IoT devices, which communicate over WiFi and MQTT. The repository
serves firmware images and metadata files containing version numbers and cryptographic
signatures of the images over HTTP. There is one metadata file per device type containing
the metadata of the most current available firmware version. The devices use a two-slot
system for storing firmware images. They publish state information like currently used
firmware version and slot over MQTT after start-up. Periodically, they poll the repository
for the newest version of the relevant metadata file. A poll can also be triggered by publish-
ing a message on a certain MQTT topic. If a different version than the currently running
one is returned, the download is started using an HTTP Get request.
While many firmware update mechanisms are available, none is yet well-established in the
IoT. Schmidt et al. believe this is due to their overly complicated nature [64]. They
therefore propose a new “minimal” mechanism. Their system consists of only a firmware
server and the IoT devices. The firmware images sent by the server are encrypted using a
pre-shared symmetric key and signed using the server’s private key. They are accompanied
by metadata (version, file size and IDs of keys to be used) which is also signed. The
metadata is transmitted and validated first. As with SUIT, the transport mechanism used
by the server is not specified. They implement a bootloader that is responsible for checking
the validity of the signatures and the firmware version. Their system also uses a two-slot
setup of the device’s flash memory.

24

3.3.3 Comparison

In this section, we examine if and how SUIT and the other reviewed update mechanisms
fulfil the requirements described in Section 3.2.

Confidentiality Schmidt et al. use symmetric keys to encrypt the transmitted firmware
images, and include an encryption key ID in the update metadata. SUIT supports the op-
tional encryption of the software image, also using symmetric keys. For encrypted software,
the manifest includes an “encryption wrapper” that specifies which key should be used to
decrypt the image and a list of processing steps necessary to decrypt the image [15, pp. 11 f.,
15].
In any case, traffic may be encrypted using appropriate transport layer security protocols,
such as Datagram Transport Layer Security (DTLS) for UDP.

Integrity of the Image and Metadata The mechanisms described by Frisch et al. and
Schmidt et al. use signed images. As described above, TUF and its derivatives Uptane
and ASSURED use signed hashes of the software images in their metadata files. Similarly,
UpKit and SUIT include the hash of the image in the signed manifest.
When the IoT device receives the update metadata, it first validates the signature using the
public key of an authorized entity (which must be already known to the device). During this
validation, changes to the manifest by unauthorized entities can be detected. If the check
is successful, the device compares the image digest contained in the metadata to the digest
of the received image. In the case of SUIT, this check is part of the command sequence
included in the manifest. During this check, changes to the image can be detected.
In any case, the integrity of the image and metadata can also be protected against man-in-
the-middle attacks by transmitting it over a secured channel, as described above.

Availability of the Updated Device Uptane, UpKit and SUIT as well as the mechanisms
described by Frisch et al. and Schmidt et al. support A/B updates using two memory slots,
so that there is a firmware to fall back to if the reboot into the new version fails.
As described above, SUIT allows the scheduling of updates using commands that instruct
the device to wait until a certain condition is met (e.g. a certain time of day or battery
level). The mechanism described by Frisch et al. allows only rudimentary scheduling using
update triggers published over MQTT.
An automatic rollback when the device cannot reestablish connection to the status tracker
server after an update is not part of any of the surveyed mechanisms, but it could be added
to the application logic.

Authentication and Authorization of the Update Source The authenticity of the update
metadata is generally established through one or more signatures, which must be validated
by the device. All mechanisms except FiGaRo and the one described by Frisch et al. use
signed metadata. The mechanisms described by Frisch et al. and Schmidt et al. sign the
update image directly.
In UpKit and SUIT, the authenticity of the update image is linked to the manifest’s through
the included hash digest. Furthermore, SUIT supports the usage of access control lists,

25

which must be implemented in application code, to grant different rights to different ac-
tors [15, p. 29].

Resilience Against Software Update-Specific Attacks See Table 3.2 for an overview of how
SUIT defends itself against the different types of attacks introduced in Section 3.2.
Replay attacks using an outdated version are generally detected using the version number
included in the update metadata. The mechanism described by Frisch et al. installs any
version that differs from the currently installed one, even if it is older because they trust that
an attacker will not gain access to their update release system. Uptane, UpKit, FiGaRo
and SUIT as well as the mechanism described by Schmidt et al. require the version number
to be newer than the currently installed version to mitigate replay attacks. Rollbacks are
also possible, but they require the rerelease of an older version using a new version number.
For this reason, SUIT calls it a “monotonic sequence number”, not a version number, and
suggests the usage of UNIX timestamps. TUF and its derivatives can also prevent the

Table 3.2: Mitigation strategies used by SUIT to defend against different types of attacks on the
software update process.

Attack type Scenario SUIT’s defense
Replay attack Attacker sends a version older than the

currently installed one.
Monotonic sequence
number in the man-
ifest (signed)

Attacker replays an update meant for an-
other device.

Vendor, device and
device class ID con-
ditions in the mani-
fest (signed)

Arbitrary package
attack

Attacker sends an arbitrary image instead
of the requested one.

Image hash in the
manifest (signed)

Update freshness at-
tack

Attacker sends a version older than the
most recent one available (may be newer
than the currently installed one).

Expiration times-
tamp in the manifest
(signed)

Freeze attack Attacker serves outdated information and
withholds updates without the device be-
ing aware.

Expiration times-
tamp in the manifest
(signed)

Extraneous depen-
dency attack

Attacker inserts additional dependencies
to make the device download unwanted
(malicious) data.

Dependency list in
the manifest (signed)

Endless data attack Attacker sends endless data instead of the
requested manifest or image.

Image size in the
manifest (signed)

Read attack Attacker reads update traffic and may
use the captured image for reverse-
engineering.

Optional encryption

26

installation of an outdated version by removing it from the targets.txt.
Uptane, ASSURED, UpKit, FiGaRo and SUIT also include targeting information such as
device class ID or serial number in the update metadata to mitigate replay attacks using
updates meant for another device.
In special cases, an attacker may replay an update that is newer than the currently installed
version, but older than the most recent one available. FiGaRo as well as the mechanisms
described by Frisch et al. and Schmidt et al. will install this update. UpKit and SUIT
are able to mitigate this attack using two different mechanisms, as described before. UpKit
uses nonces that are generated by the device for a specific update request, while SUIT
uses expiration timestamps in the manifest. Nonces have the downside of being difficult
to generate with a sufficient level of randomness [63], while expiration timestamps require
that a secure time source is available. Uptane includes a proposal for a secure time server
suitable for embedded devices, however, it also uses nonces.
SUIT’s optional expiration timestamp also allows a device to detect freeze attacks if all
manifests that are still valid are republished with a new timestamp whenever they expire and
the attacker has not compromised the signing key, similar to how TUF and its derivatives
detect freeze attacks by the expiration of the metadata files.
Extraneous dependency attacks only affect the mechanisms which support dependencies,
which are TUF, Uptane, ASSURED and SUIT. All of them mitigate against them by
signing the dependency lists, which are included in the targets.txt and update manifest,
respectively.
TUF, Uptane, ASSURED and SUIT and the mechanism described by Schmidt et al. can
mitigate endless data attacks concerning the software image using the update file size which
is included in the signed metadata. To mitigate endless data attacks on the metadata, a
cap could be placed on the maximum metadata size that the device wants to receive, as
suggested by Cappos et al. [49]. If the cap is exceeded, the device would abort the download.

Suitability for Constrained IoT Devices As described before, TUF is the only one of the
surveyed mechanisms that is not especially suitable for constrained devices. All others are
suitable in principle, but for all except SUIT, no comprehensive evaluation of the resource
usage of the update process is available.
SUIT’s implementation in RIOT has been evaluated by Zandberg et al. using three different
off-the-shelf IoT devices with Arm Cortex M microcontrollers (M0+, M3, and M4), between
32 kB and 256 kB of RAM, and between 256 kB and 1 MB of flash memory [46]. They
compare the memory usage (of RAM and flash memory) of a baseline configuration of a
CoAP server without firmware update support to two different configurations with firmware
update support using SUIT. The first configuration uses SUIT over the IoT network stack
consisting of CoAP, UDP, IPv6/6LoWPAN and IEEE 802.15.4. The second configuration
additionally uses the device management protocol LwM2M v1.0 on top of CoAP, which
can be used e.g. to provision time information to devices. In total, the SUIT configuration
requires approximately 121 kB of flash memory and 20 kB of RAM. The comparison shows
this represents an overhead of approximately 16 kB of flash memory and 5 kB of RAM
compared to the baseline configuration. However, the increase of memory requirements
may not be as large for all use cases, because some of the components used by SUIT such
as CBOR and COSE may already be part of some IoT applications. Additionally, if the

27

two-slot setup is used, flash memory is required for that also.
Furthermore, Zandberg et al. measure and analyse the total time spent on a full firmware
update. They state that a majority of the total time is spent on network transfer (60 %) and
signature verification (38 %), while all other tasks, e.g. parsing of the manifest, take only a
negligible amount of time. Considering that approximately half of the firmware image’s size
is due to the cryptographic libraries that must be included for signature verification, they
conclude that 68 % of the total update duration are caused by the signature verification.
The choice of the cryptographic library used is therefore very important for the resulting
firmware update speed.

Minimal User Interaction In all surveyed mechanisms, updates can proceed fully without
user interaction. SUIT additionally supports optional user confirmation before a device
proceeds with the installation of an update by including a user authorization condition in
the manifest [14, p. 60].

Targeting Subsets of Devices In Uptane, the custom metadata fields can be used to limit
updates to certain devices. When a vehicle polls the director for available updates, it
includes its vehicle ID, which can be used to look up which ECUs are installed in the device.
The director is then responsible for forwarding the compatible updates. In ASSURED, the
process is very similar. The controller communicates with the software repository and
performs the TUF validation steps on the received update files as well as checks local
targeting rules. If all checks are valid, the update is forwarded to the appropriate devices.
As described before, FiGaRo supports very flexible targeting using fully custom node at-
tributes, e.g. device class.
SUIT also allows the specification of custom conditions [14, p. 60]. Updates can be limited
to subsets of devices by including conditions in the manifest, e.g. that the vendor ID, device
class ID or device ID of the device that receives the manifest must match a given ID [14,
p. 58]. Similarly, UpKit supports targeting using the application ID and hardware platform
ID fields in the update manifest.

Monitoring In the mechanism described by Frisch et al., devices publish their state infor-
mation such as the currently installed version on a well-known MQTT topic after a reboot.
Monitoring is a central part of SUIT in the form of the status tracker server. However,
SUIT does not define specifically how and what should be monitored. This decision is left
to the implementer. Existing protocols such as LwM2M may be used.
Similarly, in ASSURED, the controller receives a status update from the device once the
update is complete.

Partial or Differential Updates Partial updates are a central feature of FiGaRo, as de-
scribed before. Software is divided into components, which can be updated separately
using dynamic linking.
SUIT supports both partial and differential updates. For differential updates, a list of
required image versions must be included in the manifest to ensure that the correct base
version is present before downloading the differential update. The hash digest of the base
image must also be included in the manifest of the differential update and it must be checked
using a condition before installation [15, p. 10].

28

Conclusion

When comparing how the surveyed update mechanisms fulfil the requirements listed in
Section 3.2, some common features can be identified. All of them include metadata such as
the version, file size and dependency lists with the update image. All except FiGaRo, which
focuses on enabling partial updates rather than security, use cryptographic signatures to
authenticate and check the integrity of update images and metadata. All except FiGaRo
and TUF, which is not designed for constrained devices, support a two-slot system for
storing firmware update images to memory while retaining the previously installed version
as a fallback.
The design of TUF, which requires the usage of at least four different signing keys, differs
the most from SUIT. TUF is similarly comprehensive and includes mitigation strategies for
a variety of attacks, but it is not suitable for constrained devices. Of TUF’s derivatives,
Uptane is highly tailored to the automotive use case, while ASSURED is applicable to
the general IoT use case. The main difference between ASSURED and SUIT is that in
ASSURED, the controller component interfaces with the software repository on behalf of
the IoT device, while in SUIT, the device itself interfaces with the firmware server. In
ASSURED, the controller makes the decision which updates to install when. When the
controller pushes an update to the device, it is already considered to be approved and the
device is expected to install it immediately after performing basic integrity and authenticity
checks. In SUIT, the conditions under which an update should be fetched and installed are
specified in the manifest and the device itself evaluates them to determine how it should
proceed.
The design of UpKit is most similar to SUIT. However, SUIT defines a more general and
flexible metadata format than UpKit with optional support for dependencies, partial up-
dates and update encryption, for example. Additionally, SUIT requires the validation of
only a single signature, while UpKit always requires the validation of two signatures. This
is a significant difference because the transmission and validation of signatures is expensive,
as the evaluation by Zandberg et al. showed.
Overall, SUIT is a comprehensive framework for software updates for constrained devices.
When compared to other update mechanisms, it does not lack any features. The manifest
format, especially the command sequences that specify all steps of the fetching, validation
and installation process as well as the conditions for installation, makes SUIT flexible, so
that it can be used in various different use cases.

CHAPTER 4

Thesis Contribution: A New Transport
Mechanism for SUIT Using MQTT-SN

In this chapter, we present the main contribution of this thesis, which is the design and
implementation of MQTT-SN as a new transport mechanism for SUIT in RIOT.

4.1 Design
In this section, we discuss the considerations and decisions made during the design phase.

4.1.1 Choice of Application Layer Protocol

Firstly, we must decide which application layer protocol to chose for our new transport
mechanism. We consider MQTT and MQTT-SN as options. As discussed in Section 2.4,
both of them offer advantages: MQTT-SN is more suitable for wirelessly connected con-
strained devices and is therefore first choice for our IoT use case. Its major limiting factor
is that it is currently not as widely used and well-supported as MQTT. For Linux systems,
there are only very few MQTT-SN server implementations available, none of which are
widely used and most are not actively maintained. However, on RIOT, there are actu-
ally two suitable MQTT-SN client implementations available. This may be due to RIOT’s
popularity with researchers, who are interested in MQTT-SN due to its advantages over
MQTT, even if it is not widely used in practice. Thus, we choose to implement MQTT-SN
as a new transport mechanism for SUIT.

4.1.2 Design of the Transport Mechanism

When designing the new transport mechanism using MQTT-SN, we must consider SUIT’s
distinct requirements. They differ from the most common use case for MQTT-SN, i.e. the
transfer of sensor data, in three ways:
Firstly, the size of the data units that must be transferred during a firmware update (i.e.
the manifest and the image) is much larger than the size of a sensor data unit (e.g. a

30

temperature reading). Unlike a sensor data unit, the firmware update data cannot be
transferred in a single Publish message. The message’s size would exceed the size of the
receive buffer in the IoT device’s RAM. Therefore, the update data must be transferred in
blocks; however, there is no feature like CoAP’s block-wise transfer built into MQTT or
MQTT-SN. Therefore, it must somehow be implemented by the application itself.
Secondly, the duration for which an update manifest and image are valid is much longer
than the timespan during which a sensor data unit is valid. While sensor data readings
may become outdated and be replaced by an updated reading quite frequently, e.g. multiple
times per hour, the update manifest and image may be replaced by a newer version much
less frequently. Still, the update manifest and image should only need to be published to
the broker once when they first become available. Afterwards, the broker should keep them
in storage and behave similarly to a file server.
Thirdly, the update manifest and image remain valid even if a newer version is available,
whereas an older sensor reading is generally made obsolete by a newer reading. The broker
will no longer serve the older sensor reading to publishers. To support software downgrades,
the broker should however still serve older update images.
To fulfil these requirements, we use the Retain flag when publishing the update data (see
Section 2.2). This causes the MQTT broker to store it and send it to all future subscribers
immediately upon subscription. This way, IoT devices can request a download of the
manifest and image by subscribing to the corresponding topics (see Figure 4.1). Since there
can only be one retained message on a topic at a time, we must publish each version and
each block on a separate topic. To separate images compiled for different device classes, we
may also include the device class ID in the topic name, e.g. suit/images/v2.0/f767zi/0.
To ensure a long-term storage, we additionally set the QoS level to 1, since a retained
message with QoS level 0 may be deleted by the broker at any time. Using QoS level 2 is
not necessary since the device can keep track of which blocks it has already received, and
discard duplicate blocks. QoS level 2 would only increase the control overhead unnecessarily
by tripling the number of acknowledgements per block.
To reduce the number of subscriptions necessary, wildcard subscriptions could be used. For
example, the IoT device may subscribe to the wildcard topic suit/images/v2.0/f767zi/#
(which includes the subtopics ending in /0, /1, /2,. . .) to receive all retained block mes-
sages. However, this would not lower the amount of control traffic. A topic ID must be
registered for each of the subtopics. Without a wildcard subscription, the topic IDs are in-
cluded in the SubAcks. With a wildcard subscription, a Register and RegAck message
must be sent for each subtopic. Since the sizes of these control message types are very sim-
ilar, the amount of control traffic is basically the same in both cases. Additionally, we must
also consider the issue of message order. According to the MQTT protocol specification,
the broker must forward messages published with QoS level > 0 to subscribers in the order
that they were published in [25, pp. 97-98]. However, it does not specify in what order the
broker should forward messages published on topics matching a wildcard subscriptions.1
Therefore, the implementation cannot assume that the blocks arrive in any kind of order
when wildcard subscriptions are used. This poses a problem because typical flash memory

1At the time of writing, the Mosquitto broker also uses publish-order for these messages (with the
exception of the parent topic), however, this may change at any time. See: https://www.eclipse.org/
lists/mosquitto-dev/msg02463.html

https://www.eclipse.org/lists/mosquitto-dev/msg02463.html
https://www.eclipse.org/lists/mosquitto-dev/msg02463.html

31

Firmware
Author

Firmware Server
(MQTT-SN Broker)

MQTT PUBLISH
RETAIN=1, QoS=1
Firmware + Manifest

Status Tracker
Server

IoT Device

MQTT-SN PUBLISH
suit/trigger suit/man/...

MQTT-SN PUBACK

Validate
manifest

MQTT-SN PUBLISH suit/man/.../0

MQTT-SN PUBACK

Procced with
installation

MQTT-SN SUBSCRIBE suit/trigger

MQTT-SN SUBSCRIBE suit/man/.../#

MQTT PUBLISH
suit/trigger suit/man/...

(Repeat until all blocks are transferred)

MQTT-SN PUBACK

MQTT-SN PUBLISH suit/fw/.../0

MQTT-SN SUBSCRIBE suit/fw/.../#

(Repeat until all blocks are transferred)

Figure 4.1: Sequence diagram of a software update using SUIT with a push notification and MQTT-
SN as the transport mechanism: The status tracker server pushes an update trigger to
the device using a Publish message. The device then downloads manifest and image
by subscribing to the block topics one by one and receiving each block as a retained
Publish message.

hardware interfaces first set all bits during erase operations and then only unset certain bits
during write operations. This makes writing to flash memory in random order impractical,
unless all of the writes are multiples of the page size in length as well as page-aligned. Thus,
RIOT’s APIs only support in-order write access to the flash memory. Out-of-order blocks
would need to be buffered in RAM before they can be written to flash memory. However,
in the worst case, the blocks arrive in reverse order, which would require almost the entire
firmware image to be buffered in RAM. This is clearly not feasible. Additionally, neither of
the MQTT-SN client implementations in RIOT actually support wildcard subscriptions at
the time of writing. Therefore, we decide against the usage of wildcard subscriptions.
It must be noted that our design using retained messages has one major disadvantage when
compared to CoAP: We cannot support variable block sizes as easily, because the block size
must be fixed prior to the initial publishing. If multiple block sizes are required, the update
manifest and image must be uploaded multiple times using different block sizes. However,
software updates are only expected to work on devices of the same class, e.g. devices that
have identical hardware. Thus, multiple different block sizes may not be needed, since a
single block size can already provide a good match for the capacities of all targeted devices.

32

4.2 Implementation
To run SUIT on a RIOT device, the modules riotboot and suit are required. The module
riotboot is a bootloader that partitions the device’s flash memory into three sections: The
first section contains the bootloader itself, and the second and third sections are firmware
slots. Thus, two firmwares can be stored in flash memory at the same time. One slot is
active, i.e. it is used during device boot-up. The inactive slot is used to store the newly
downloaded firmware image during the update process. At the start of each firmware slot,
the riotboot header is stored. It contains four 4 B long values: a magic number (“RIOT”
in ASCII), the firmware version version, the start address of the actual firmware, and a
checksum of the header.2 The module suit contains the SUIT-related functionality, e.g.
the different transport mechanisms. Currently, there is only one transport mechanism that
is implemented, which uses CoAP. In this section, we describe the implementation of the
new transport mechanism using MQTT-SN.

4.2.1 Choice of MQTT-SN Implementations

Firstly, we discuss our choices of MQTT-SN implementations both on the client and on the
server side.

Client Implementation

As mentioned in Section 4.1.1, RIOT offers two different MQTT-SN client implementations:
emcute and asymcute. The main difference between them is that emcute offers synchronous
(blocking) functions, while asymcute offers asynchronous (non-blocking) functions. For
example, consider how the two libraries implement the Subscribe request: The function
emcute_sub returns only after the request is completed, either due to a server response or
a timeout. In contrast, the function asymcute_subscribe returns as soon as the request
has been sent, and a user-provided callback function is called when the response is received
or the request has timed out. Internally, asymcute uses asynchronous UDP sockets that
use an event loop to handle incoming messages and timeouts3.
Its asynchronous design allows asymcute to support multiple simultaneously outstanding
requests, e.g. Publishes or Subscribes. Each outstanding request is associated with
its own request context data structure including a transmit buffer. In contrast, emcute
uses only one global transmit buffer. For applications which make heavy use of requests
originating at the IoT device, this can be a major performance advantage. However, these
performance gains come with increased memory usage. A comparison of the memory usage
of the two implementations shows that asymcute uses around 3.2 kB more flash memory
and around 0.2 kB more RAM than emcute.4 The increased memory usage is due to a
larger code size caused by the library functions and the asynchronous sockets and slightly
larger data structures used.

2https://github.com/RIOT-OS/RIOT/blob/010dbcc9d3ff2890b3da2cb8926cb6ef7df2874d/
bootloaders/riotboot/doc.txt

3https://riot-os.org/api/group__net__sock__async__event.html
4https://github.com/vera/masters-thesis/blob/master/results/asymcute_emcute_comparison/

2021-02-19-memory-usage-asymcute-vs-emcute.txt

https://github.com/RIOT-OS/RIOT/blob/010dbcc9d3ff2890b3da2cb8926cb6ef7df2874d/bootloaders/riotboot/doc.txt
https://github.com/RIOT-OS/RIOT/blob/010dbcc9d3ff2890b3da2cb8926cb6ef7df2874d/bootloaders/riotboot/doc.txt
https://riot-os.org/api/group__net__sock__async__event.html
https://github.com/vera/masters-thesis/blob/master/results/asymcute_emcute_comparison/2021-02-19-memory-usage-asymcute-vs-emcute.txt
https://github.com/vera/masters-thesis/blob/master/results/asymcute_emcute_comparison/2021-02-19-memory-usage-asymcute-vs-emcute.txt

33

In our firmware update application, the device frequently sends Subscribe requests (one
for each block topic, see Figure 4.1), but since the blocks must be received in-order, each
Subscribe must be completed before the next one can be sent. To allow the device to
send multiple Subscribes at once, potential out-of-order blocks would need to be handled,
which would complicate the transport logic and would require an additional memory buffer.
Therefore, asymcute does not appear to promise better performance than emcute that
would justify the increased memory usage, which makes emcute the better choice for our
application.

Server Implementation

When choosing the MQTT-SN server implementation used, we consider the following two
options: the Really Small Message Broker (RSMB)5 and the Eclipse Paho MQTT-SN Gate-
way implementation6. Both are open-source projects at the Eclipse Foundation.
The RSMB was developed at IBM and initially released as closed-source. The widely
known Mosquitto broker was developed as an open-source alternative to it. The RSMB
was eventually contributed to Eclipse as open-source in 2013, but it is no longer being
actively developed and can now be considered deprecated. In its feature set, it is largely
inferior to Mosquitto, which has a large user base and is being actively maintained. The
only major advantage of RSMB is its MQTT-SN support, which Mosquitto and basically
all other MQTT brokers lack.
The Paho MQTT-SN Gateway is a standalone gateway that translates between MQTT-SN
and MQTT, which means that it must be used in combination with an MQTT broker (as
seen in Figure 2.4). This is a major advantage over the RSMB, because it allows us to
combine it with an up-to-date broker implementation such as Mosquitto.
Therefore, we initially tested the Paho MQTT-SN Gateway and the Mosquitto MQTT
broker in combination. However, the Paho Gateway appeared to be lacking in maturity
and suffered from several bugs (see Appendix A.2.1). It also achieved much worse total
update durations in preliminary tests than the RSMB. Therefore, we decide to use the
RSMB to obtain the best possible evaluation results.

4.2.2 Implementation of the Transport Mechanism

To add the transport mechanism using MQTT-SN to RIOT’s SUIT implementation, we
firstly add a tool that allows easy publishing of new firmware images and manifests. For
the CoAP transport mechanism, the make target suit/publish does this by simply copying
the manifest and firmware files to the folder that is being served by aiocoap-fileserver7.
This makes the files available for retrieval using CoAP GET. For the MQTT-SN transport
mechanism, we implement a Python program for the same purpose. The program receives
a file path, block size and topic prefix as input parameters (among others) and performs
a block-wise publishing of the file to the subtopics <PREFIX>/0, <PREFIX>/1, <PREFIX>/2,
and so on. It additionally publishes the total number of blocks to the parent topic PREFIX.

5https://github.com/eclipse/mosquitto.rsmb
6https://github.com/eclipse/paho.mqtt-sn.embedded-c/tree/master/MQTTSNGateway
7https://aiocoap.readthedocs.io/en/latest/module/aiocoap.cli.fileserver.html

https://github.com/eclipse/mosquitto.rsmb
https://github.com/eclipse/paho.mqtt-sn.embedded-c/tree/master/MQTTSNGateway
https://aiocoap.readthedocs.io/en/latest/module/aiocoap.cli.fileserver.html

34

This information is used by the IoT device to know how many blocks to expect. It can
also be used by the publishing program to delete previous retained blocks. This may be
necessary when a file is published under an already used topic prefix but the number of
blocks has decreased, either because the new file is smaller or because a larger block size
is used. If the excess blocks were not deleted, they would be needlessly transmitted to all
subscribing IoT devices from then on.
Secondly, we implement the actual transport mechanism. As shown in Figure 4.1, it in-
volves mainly the handling of incoming Publish messages on the trigger, update manifest
and image topics. For the initial connection setup, we add two new shell commands: con
<ipv6 addr> [port] for connecting to an MQTT-SN gateway and sub <topic name> for
subscribing to a trigger topic. Ideally, a connection to an available gateway should be auto-
matically established using gateway discovery (see Section 2.3), but this is not supported by
emcute. It would also require some additionally security mechanisms such as the usage of
DTLS to authenticate the gateways. If the gateway discovery process is not secured, any ma-
licious server could announce itself using GwInfo messages and start serving invalid mani-
fests or firmware images to execute resource exhaustion attacks. For monitoring, the device
automatically publishes messages on three device status topics suit/version/<DEVICE_ID>
(for the current firmware version), and suit/slot/[in]active/<DEVICE_ID> (for the in-
dices of the currently active and inactive firmware slots) once it is connected to a gateway.
For the handling of incoming Publish messages, we implement three different handler
functions:
Firstly, there is the handler for Publishes on the trigger topic. These messages contain a
manifest topic prefix. The device subscribes to the topic name contained in the payload
and then to its subtopics /0, /1, /2,. . . to receive the number of manifest blocks as well as
the blocks themselves, as described in Section 4.1.2.
Secondly, there is the handler for Publishes on the manifest topic. These messages contain
either the total number of blocks to be expected or a block of the manifest, as described
above. The manifest blocks are copied to a 640 B buffer, which is large enough to hold
an entire manifest, with an offset depending on the block number. If the final block has
been transmitted, suit_parse is called on the manifest, which starts the validation of
the manifest as described in Section 3.3.1, and if all checks are successful, the command
sequences are executed, which usually contain a “fetch” command for the update image.
We extend the SUIT fetch command handler to handle manifest URIs beginning with
mqtt:// followed by a topic name8 to call the fetch function defined by the MQTT-SN
transport. This fetch function subscribes to the given topic and registers the third handler,
which is for Publishes on the firmware topic. Each firmware block is written to flash
memory. If fewer bytes or more bytes than the total image size from the manifest are
received, the fetch command aborts with an error. Otherwise, further commands (e.g.
image hash check) are executed. If successful, the device finally reboots from the new
firmware.

8This is not an official URI scheme. Currently, no URI schemes for MQTT or MQTT-SN have been
officially registered at the Internet Assigned Numbers Authority (IANA). A proposal has been discussed by
the MQTT Technical Committee (https://issues.oasis-open.org/browse/MQTT-203), however, it does
not include topic names, which we require here. Therefore, we use this simple unofficial scheme.

https://issues.oasis-open.org/browse/MQTT-203

35

1 typedef struct {
2 uint16_t num_blocks_total ;
3 uint16_t num_blocks_rcvd ;
4 uint16_t current_block_num ;
5 uint16_t current_block_len ;
6 } suit_mqtt_sn_blockwise_t ;

Listing 4.1: The data structure used to keep track of the current state of the block-wise transfer over
MQTT-SN.

A struct keeps track of the current state of the block-wise transfer (see Listing 4.1).
The total number of expected blocks is necessary to know when the final block has been
received. The number of already correctly received blocks is used to check whether the
current received block is in-order, which is necessary because the firmware image must be
written to flash memory without gaps, as described above. The number and length of the
current block are used to calculate the correct offset and number of bytes to write when
writing to both flash memory and the manifest buffer in RAM.
The source code of the implementation can be found at https://github.com/vera/RIOT/
tree/suit/mqtt-sn.

https://github.com/vera/RIOT/tree/suit/mqtt-sn
https://github.com/vera/RIOT/tree/suit/mqtt-sn

CHAPTER 5

Thesis Outcome: Evaluation and
Comparison

In this chapter, we present the evaluation of our implementation. The goal of the evaluation
is to find out how well the new implementation of the MQTT-SN transport mechanism for
SUIT in RIOT performs, especially in comparison to the existing CoAP transport mecha-
nism. For this purpose, we conduct measurements of both variants.

5.1 Setup
In this section, we describe the parameters of our evaluation, such as hardware and software
setup used, as well as the metrics that we examined. The workload which we evaluate is
a full firmware update from start to end as outlined in Section 3.3.1, i.e. from the update
trigger followed by transmission of the manifest and the update image until the successful
reboot. The full firmware of the IoT device is updated.
We consider four metrics in our evaluation. Firstly, we measure both the RAM and flash
memory requirements of our implementation. Secondly, we measure the total traffic volume
going over the wireless link during the update. Since we do not vary the protocols used
other than on the application layer (MQTT-SN or CoAP), we can evaluate which protocol
causes more overhead. Thirdly, we measure the total time required for the full firmware
update. Finally, we measure the energy consumption of a full firmware update.
For the time and energy consumption measurements, we use the Magdeburg Internet of
Things Lab (MIoT Lab) [65], which is a testbed for IoT applications. At the time of writ-
ing, it consists of eight testbed nodes, which are positioned in several rooms on two levels
of the computer science faculty’s building at the Otto von Guericke University Magdeburg.
The testbed nodes each consist of two commercially available hardware components: an
x86 and an embedded device (Nucleo F767ZI). See Table 5.1 for an overview of the hard-
ware specifications. The Nucleo boards are flashed and controlled by the x86 components,
which are connected to the testbed management system via Ethernet. The boards are
equipped with multiple transceivers, e.g. for Institute of Electrical and Electronics Engi-
neers (IEEE) 802.15.4, IEEE 802.11n (Wi-Fi) and sub-GHz communication, and are also
connected to the x86 components via Ethernet. The testbed nodes are capable of monitoring

38

the power usage of the board and the transceivers separately. The testbed uses the DES-
Cript experiment description language to store experiment settings to ensure repeatability
and reproducibility.

Table 5.1: Parameters that influence the results of the evaluation measurements. The parameters
that are varied during the evaluation are highlighted.

Parameter Value(s)
Hardware

Boards Nucleo F767ZI
. . . CPU ARM Cortex M7 (STM32) @ 216 MHz
. . . Flash memory 2 MiB
. . . RAM 512 KiB
. . . Transceiver Atmel AT86RF215
. Transmit frequency 2.4 GHz
. Transmit power maximum1

Power monitoring Espressif ESP32 + TI INA3221
MQTT-SN/CoAP server Virtual 4 core CPU @ 2.4 GHz, 8 GB RAM
Testbed conditions

RSSI between nodes 77.27 dBm
Other network loads low2

Other loads on the MQTT-SN/CoAP
server

none

Software

IoT OS RIOT
Network stack GNRC
. . . Host-to-network layer {Ethernet, IEEE 802.15.4}
. . . Network layer IPv6 + 6LoWPAN
. . . Transport layer UDP
. . . Application layer {MQTT-SN, CoAP}
MQTT-SN server and client RSMB and emcute
CoAP server and client aiocoap-fileserver and nanocoap

SUIT configuration parameters

Size of manifest ∼500 B
Size of firmware image ∼85 kB
Block size {32 B, 64 B, 128 B, 256 B, 512 B}
Number of updated devices {1, maximum (7)}

1Incorrectly reported as 3 dBm by RIOT. The true maximum transmit power of the AT86RF215 is
15.5 dBm [66, p. 191]. See: https://forum.riot-os.org/t/changing-the-tx-power-of-the-at86rf215

2During the wireless measurements, other radio interference, e.g. by Wi-Fi traffic, was low, since the
campus was relatively empty due to the corona virus pandemic and the experiments were conducted in the
late evening or night (after 8 p.m.).

https://forum.riot-os.org/t/changing-the-tx-power-of-the-at86rf215

39

Several parameters can be expected to affect the performance of our system, such as other
loads on the network or servers or the size of the firmware image being transmitted to
the IoT devices. See Table 5.1 for an overview of the relevant parameters. We vary only
those parameters that we are interested in evaluating. They are highlighted in Table 5.1.
Firstly and most importantly, we vary the transport mechanism used, i.e. CoAP or MQTT-
SN. Secondly, we vary the block size used during transmission to find out which effect
it has on our evaluation metrics and which block size performs best. Thirdly, we vary
the number of devices being updated at the same time to evaluate the scalability of the
SUIT implementation. At the time of writing, the maximum possible number of nodes
usable for these experiments is seven nodes.3 Finally, to better isolate the effects of the
parameters being varied, we conduct measurements first over Ethernet, which provides a
more stable and reproducible network, and then over wireless radio, which is closer to the
real environment in which SUIT may be used. All other parameters are fixed throughout
our evaluation.
The reasons for the choice of MQTT-SN implementations were already discussed in Sec-
tion 4.1.1. The CoAP implementations were chosen as suggested in the README of the
pre-existing SUIT implementation in RIOT.4 For a full list of all software used including
version numbers, see Appendix A.1.

5.2 Methods
In this section, we describe how we conducted our evaluation, e.g. how the data is gathered
and which tools are used to analyse it. The raw data, program files, DES-Cript files as well
as more detailed descriptions of our methods for the purpose of reproducibility are given at
https://github.com/vera/masters-thesis.

Memory Usage

To evaluate the memory usage of SUIT in RIOT, we compile our binaries optimized for
code size using the flag -Os, which is standard for RIOT, inside the Docker container
riot/riotbuild. The binaries are compiled for the testbed boards (Nucleo F767-ZI) and
include the modules of the GNRC network stack necessary for wireless communication over
IEEE 802.15.4. We use the C standard library implementation Picolibc5 instead of the
default Newlib6 because of its reduced memory footprint. Using this setup, the results we
achieve for the CoAP version are very similar to those reported by Zandberg et al. in their
evaluation [46]. The transmit and receive buffers of emcute are left at the default size of
512 B each.
To determine the RAM and flash memory usages of the compiled binaries, we use the binary
size profiler Bloaty7. Bloaty provides a fine-grained memory usage split down to compile
units (i.e. files) or symbols (i.e. function or variable names). It also allows the definition

3One of the eight testbed nodes could not be used due to hard faults that occur at the initial firmware
booting, presumably due to problems with the connection to the attached EEPROM.

4https://github.com/RIOT-OS/RIOT/blob/80e14e88a10d0795b5d8416edd564bb09f64ae38/examples/
suit_update/README.md

5https://github.com/picolibc/picolibc
6https://sourceware.org/newlib
7https://github.com/google/bloaty

https://github.com/vera/masters-thesis
https://github.com/RIOT-OS/RIOT/blob/80e14e88a10d0795b5d8416edd564bb09f64ae38/examples/suit_update/README.md
https://github.com/RIOT-OS/RIOT/blob/80e14e88a10d0795b5d8416edd564bb09f64ae38/examples/suit_update/README.md
https://github.com/picolibc/picolibc
https://sourceware.org/newlib
https://github.com/google/bloaty

40

of custom categorization using regular expressions that are applied on the compile unit
or symbol names. For example, all file paths containing “emcute” can be sorted into the
category “mqtt-sn” to obtain the total memory usage related to the MQTT-SN component.

Network Traffic Volume

The network traffic is captured in a local setup of a Nucleo F767-ZI connected to a laptop
computer via Ethernet using Wireshark8. The resulting capture file is then analysed using
a self-written Python program9 which uses Pyshark10, a wrapper for Wireshark’s command
line equivalent tshark, to dissect the packets and then calculates total for each involved
protocol and each packet direction (i.e. server/broker to device or device to server/broker).
Because the update’s network traffic is more or less deterministic when there is no random
packet loss, a single capture is sufficient to evaluate the network traffic volume.

Total Duration of the Firmware Update and Energy Consumption

The duration and energy consumption measurements are run in the MIoT Lab, as described
above. The MQTT-SN/CoAP server is run on a virtual server that is reachable from the
Nucleo boards via the x86 nodes. The connection is established either via Ethernet or via a
6LoWPAN border router11 running on one of the Nucleo boards. During the experiments,
the CPU and RAM usages of the virtual server are logged.
Both duration and power usage are measured at the same time. The measurements are
repeated 30 times for each parameter combination. The power usage readings are logged
by the ESP32 which is connected to two TI INA3221 current and voltage monitors with
three channels each, so they can separately monitor the power usage of the Nucleo board,
its transceivers and environmental sensors. The monitors are configured to use a conversion
time of 140 µs for both the shunt and bus voltage and to average 64 samples for each
reading. New power readings are logged every 860 µs. The readings as well as the start
and end timestamps are captured by a Python program running on the x86 node which
receives the log outputs of the Nucleo board and the ESP32 over serial connections. To
finally calculate the energy consumption, the power readings (in W) are integrated over
the time period during which the firmware update was running. For the updates run over
Ethernet, we use only the power readings of the Nucleo board itself in this calculation. For
the updates run over-the-air, we additionally use the power readings of the IEEE 802.15.4
transceiver. The power readings of the other channels, i.e. the other transceivers and
sensors, are discarded since they are not relevant for the firmware update process.

5.3 Results
In this section, we describe and discuss the results of our evaluation.

8https://wireshark.org
9https://github.com/vera/traffic-analysis

10https://github.com/KimiNewt/pyshark
11We use the example gnrc_border_router provided by RIOT.

https://wireshark.org
https://github.com/vera/traffic-analysis
https://github.com/KimiNewt/pyshark

41

Memory Usage

The results of the memory usage analysis are shown in Table 5.2. Note that the actual
RAM usages of the two variants could be lower, since we did not optimize the stack sizes
but left them at their default values, which may be larger than actually required.
The direct comparison of the memory usages shows that our implementation of the MQTT-
SN transport mechanism requires 0.4 KiB more flash memory and 1.2 KiB more RAM than
the pre-existing implementation of the CoAP transport mechanism. The slight increase
in flash memory usage is due to a slightly larger code size (+0.17 KiB) of the functions
required for the Over-The-Air (OTA) updates, e.g. the MQTT-SN Publish handlers (see
Section 4.2.2) and the functions required for the usage of thread flags. Thread flags are
used in our MQTT-SN transport mechanism code as well as emcute’s code to communicate
events between threads. The increase in RAM usage is due to RAM used by emcute, mainly
for the transmit and receive buffers (512 B each by default), which are statically allocated
in the BSS section. In contrast, the transmit buffer (256 B by default) and receive buffer
(sized according to the requested block size) used by nanocoap are allocated on the stack
of the transport mechanism’s thread.
The Nucleo boards that we use in our testbed are less constrained in terms of flash mem-
ory and RAM than others, since they are part of STMicroelectronics’ “high-performance”
product line. This puts them beyond the least constrained class defined by RFC 7228 [12]
(Class 2 with ∼50 KiB RAM and ∼250 KiB flash memory). However, it can be seen that
our MQTT-SN variant can also be run on more constrained devices (up to approximately
Class 1 with ∼10 KiB RAM and ∼100 KiB flash memory), same as the pre-existing CoAP
variant. Thus, the implementation fulfils the goal set by the SUIT standard to be suitable
for Class 1 devices.

Network Traffic Volume

We examine the application layer traffic in Figure 5.1. In both cases, the payload sent
from the server or broker to the device is equal to the size of the update manifest and
firmware image as listed in Table 5.1 (approximately 85 kB). In addition to the payload

Table 5.2: Flash memory and RAM usage of the SUIT application using the CoAP or the MQTT-SN
transport mechanism.

Flash memory RAM
Component CoAP MQTT-SN Diff. CoAP MQTT-SN Diff.
Core 28.6 KiB 30.0 KiB +1.4 KiB 4.6 KiB 4.6 KiB 0
Network 29.3 KiB 28.8 KiB −0.5 KiB 6.2 KiB 6.2 KiB 0
CoAP/MQTT-SN 2.2 KiB 1.8 KiB −0.5 KiB 0 1.2 KiB +1.2 KiB
Crypto 6.2 KiB 6.2 KiB 0 96 B 96 B 0
COSE & CBOR 2.1 KiB 2.0 KiB −0.1 KiB 0 0 0
SUIT 3.1 KiB 3.0 KiB −0.0 KiB 48 B 48 B 0
OTA 2.5 KiB 2.6 KiB +0.2 KiB 8.4 KiB 8.4 KiB 0
Total 74 KiB 74.4 KiB +0.4 KiB 19.3 KiB 20.5 KiB +1.2 KiB

42

32 64 128 256 5120

50

100

150

200

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

Block size in B

Tr
affi

c
in

kB

Header Topics/URIs Payload

CoA
P

CoA
P

CoA
P

CoA
P

CoA
P

a) Broker/server to device.

32 64 128 256 5120

100

200

300

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

M
Q

TT-S
N

Block size in B

Tr
affi

c
in

kB

Header Topics/URIs Payload

CoA
P

CoA
P

CoA
P

CoA
P

CoA
P

b) Device to broker/server.

Figure 5.1: Network traffic volume of a full firmware update using SUIT over MQTT-SN or CoAP:
Only the relevant network traffic caused by the application layer protocols and payloads
is shown.

itself, there is overhead traffic, i.e. protocol headers, MQTT-SN topic names and CoAP
URIs. As expected, the amount of overhead traffic decreases approximately linearly with
the increased block size.
It can be seen that MQTT-SN causes slightly more traffic than CoAP. The larger the block
size, the smaller the difference is. For a block size of 32 B, the difference in traffic volume
between MQTT-SN and CoAP is the largest: MQTT-SN causes 13.2 kB and 17.4 kB more
traffic from broker to device and device to broker, respectively. For a block size of 512 B,
MQTT-SN causes only 1.2 kB and 1.1 kB more traffic from broker to device and device to
broker, respectively. This is because the sizes of the headers that are sent per block are

Table 5.3: Traffic caused by MQTT-SN and CoAP headers: Note that the CoAP header sizes are
specific to the CoAP options used here (e.g. number of URI path components).

Direction
Protocol Client → server Server → client
MQTT-SN 7 B (Subscribe) + 5 B (PubAck)

= 12 B
7 B (SubAck) + 7 B (Publish)
= 14 B

CoAP 11 B (Get request) 9 B (Get response)

Table 5.4: Number of packets sent during a full firmware update over MQTT-SN and CoAP.

Block size
Protocol 32 B 64 B 128 B 256 B 512 B
MQTT-SN 10569 5293 2653 1333 673
CoAP 5282 2642 1322 662 332

43

32 64 128 256 5120

10

20

30

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

a) MQTT-SN, updating a single device

32 64 128 256 5120

10

20

30

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

b) CoAP, updating a single device

32 64 128 256 5120

10

20

30

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

c) MQTT-SN, updating seven devices in parallel

32 64 128 256 5120

10

20

30

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

d) CoAP, updating seven devices in parallel

Figure 5.2: Duration of a full firmware update over Ethernet using MQTT-SN or CoAP.

smaller for CoAP than for MQTT-SN (see Table 5.3). As expected, MQTT-SN also sends
twice as many packets per block as CoAP does (see Table 5.4). Thus, the amount of traffic
caused by lower layer protocol headers such as IEEE 802.15.4 and 6LoWPAN, which we do
not examine here, is doubled.

Total Duration of the Firmware Update and Energy Consumption

The measured total durations of the firmware updates over Ethernet are shown as boxplots
in Figure 5.2. It can be seen that there is little variation between the 30 repetitions of
each parameter combination. Firstly, Figure 5.2a and Figure 5.2b show the results for the
firmware update of a single device. The standard deviations are below 1 %, except for the
combinations (Ethernet, MQTT-SN, 128 B, 1 device) and (Ethernet, CoAP, 256 B, 1 de-
vice), where there are outliers with significantly increased durations. Secondly, Figure 5.2c
and Figure 5.2d show the results for the firmware update of seven devices in parallel. Here,
the standard deviations of the 30 repetitions are slightly larger (up to 4.4 %), except for
the combination (Ethernet, MQTT-SN, 64 B, 7 devices), where two outliers were measured.
The reason for these outliers could not be determined definitively from the experiment
logs. As the outliers lie approximately 15 s above the other measurements, which is the
MQTT-SN’s default timeout duration, it can be assumed that they are due to a single lost
MQTT-SN message.
Comparing the different measurements, it can be seen that, firstly, as expected, the update

44

32 64 128 256 5120
2
4
6
8

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

a) MQTT-SN, updating a single device

32 64 128 256 5120
2
4
6
8

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

b) CoAP, updating a single device

32 64 128 256 5120
2
4
6
8

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

c) MQTT-SN, updating seven devices in parallel

32 64 128 256 5120
2
4
6
8

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

d) CoAP, updating seven devices in parallel

Figure 5.3: Energy consumption of the IoT board during a full firmware update over MQTT-SN and
CoAP.

duration decreases with the block size. The decrease is not fully linear because the larger
block sizes do not speed up all steps of the firmware update; e.g. the time required for the
validation of manifest and signatures remains the same. Secondly, even though a higher total
duration could be expected for MQTT-SN due to the higher traffic volume (see Section 5.3),
there is no significant difference between the average update durations measured for MQTT-
SN and CoAP. Thirdly, when transmitting the updates over Ethernet, there is also no
significant difference between the average update durations measured for a single device
and seven devices in parallel.
During the parallel update of seven devices, the total RAM usage on the virtual machine
running the MQTT-SN/CoAP server remains at approximately 9 %. In the CPU usage,
there are peaks that coincide with the timings of the firmware updates. These peaks go
up to 92.4 %, but do not last more than 5 seconds, i.e. not throughout the entire update
transmission. Except during these peaks and during the waiting times between updates,
the CPU usage is at 5 % to 15 %. Thus, the server does not appear to act as a performance
bottleneck during the parallel update experiments.
The measured energy consumption during the firmware updates run over Ethernet are shown
as boxplots in Figure 5.3. As expected, it can be seen that there is a strong correlation
between the measured energy consumption and the measured update duration. Thus, the

45

32 64 128 256 5120

50

100

150

200

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

a) MQTT-SN, updating a single device

32 64 128 256 5120
20
40
60
80

Block size in B

U
pd

at
e
du

ra
tio

n
in

s

b) CoAP, updating a single device

Figure 5.4: Duration of a full firmware update over IEEE 802.15.4 using MQTT-SN or CoAP.

same observations can be made here as for Figure 5.2: The energy consumption decreases
slightly less than linearly with the block size. There is no significant difference between the
average energy consumption measured for MQTT-SN and CoAP.
Finally, the duration measurements for the wireless update of a single device (using
IEEE 802.15.4/ 6LoWPAN) can be seen in Figure 5.4. In these experiments, testbed node
7 is used as the border router. Testbed node 10 (“TestNode”) is used as the SUIT node.
Node 10 is positioned in an adjoining room to node 7, i.e. the two nodes are relatively
close to each other. Using the 2.4 GHz band, the average RSSI between the two nodes is
measured to be 77.27 dBm.
A complication with the wireless MQTT-SN measurements was caused by an unclear point
in the protocol specification: It states that only messages unicasted to the MQTT-SN
gateway by a client are retransmitted if no acknowledgment is received before a timeout [26,
p. 25]. There is no retransmission procedure specified for messages unicasted by the gateway
to a client, such as the firmware blocks in our case. This is likely because the MQTT-SN
gateway is meant to be used in conjunction with an MQTT broker, which would handle all
retransmissions of unacknowleged messages. Thus, the gateway does not need to retransmit
lost messages itself. However, the RSMB server implementation of MQTT-SN does not
implement a standalone gateway that connects to a separate broker. The RSMB integrates
an MQTT and MQTT-SN broker in the same application. When a client connects to the

Table 5.5: Average update durations of both wired and wireless updates over MQTT-SN and CoAP.

MQTT-SN CoAP
Block size Wired Wireless Diff. Wired Wireless Diff.
32 B 32.65 s n/a n/a 33.09 s 80.45 s +143.13 %
64 B 18.88 s 131.6 s +597.03 % 19.17 s 50.35 s +162.65 %
128 B 12.48 s 92.88 s +644.23 % 12.17 s 31.36 s +157.68 %
256 B 8.55 s 46.43 s +443.04 % 8.76 s 22.18 s +153.2 %
512 B 6.84 s 30.15 s +340.79 % 6.94 s 17.26 s +148.7 %

46

32 64 128 256 5120
10
20
30
40

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

a) MQTT-SN, updating a single device

32 64 128 256 5120
5

10
15
20

Block size in B

En
er
gy

co
ns
um

p-
tio

n
in

m
W

h

b) CoAP, updating a single device

Figure 5.5: Energy consumption of the IoT board (including transceiver) during a full firmware
update over IEEE 802.15.4 using MQTT-SN or CoAP.

RSMB using MQTT-SN, there is no connection made internally to the MQTT broker.
Thus, the broker actually does not retransmit any lost messages, since it is not involved
in the transaction. This means that when a block is lost in transmission, the update fails.
Additionally, there appears to be a bug in RIOT affecting IEEE 802.15.4 retransmissions
over the AT86RF215 transceiver: A sniffer trace also showed no such retransmissions in
case of a missing acknowledgement. Due to time constraints, this could not be investigated
further.
As expected due to the lower throughput, the wireless updates are slower than the wired
updates. We compare the average update durations side-by-side in Table 5.5. Over CoAP,
the wireless updates are slower by 153 % on average when compared to the wired updates.
Over MQTT-SN, the wireless updates are slower by 506 % on average. Thus, although there
was no significant difference between CoAP and MQTT-SN when running wired updates,
MQTT-SN performs much worse than CoAP when updating over the air. The main reason
for this is the much longer default timeout duration for retransmissions of 15 s [26, p. 27].
This means that every time an MQTT-SN message is lost, the update duration increases
by at least 15 s. Thus, the performance is worst for the smallest block sizes where the
most MQTT-SN messages are transmitted, each of which can potentially get lost and cause
a timeout. Additionally, the chance of an update-stopping timeout occurring (after three

Table 5.6: Effect of block size increases on average update durations of both wired and wireless
updates over MQTT-SN and CoAP.

MQTT-SN CoAP
Block sizes Wired Wireless Wired Wireless
32 B → 64 B −42.18 % n/a −42.07 % −37.42 %
64 B → 128 B −33.9 % −29.42 % −36.52 % −37.72 %
128 B → 256 B −31.49 % −50.01 % −28.02 % −29.27 %
256 B → 512 B −20 % −35.06 % −20.78 % −22.18 %

47

unsuccessful retransmissions) is higher the smaller the block size is. Due to this, none
of 60 repetitions of a wireless update over MQTT-SN with a block size of 32 B could be
completed successfully. In contrast, CoAP uses exponentially increasing timeout durations
with a default starting value of 2 s to 3 s and thus retransmits much faster.
The effect of increasing the block size is very similar to the one observed for wired updates:
A doubling of the block size leads to a decrease of the average update duration of around
33 % on average (see Table 5.6). As discussed previously, the decrease is less than 50 %
because the increased block size speeds up the transmission of the update, but not other
steps, e.g. the validation of manifest and signatures, and writing the update image to flash
memory. It must be noted that the results also show that the speedup effect decreases
with each block size doubling. Considering wireless transmission, it can be expected that
the speedup effect is smaller because starting from a block size of 64 B, the blocks must
be fragmented by 6LoWPAN due to IEEE 802.15.4’s maximum frame size of 127 B. This
fragmentation adds additional overhead in terms of computation and traffic. Over CoAP,
it can be seen that the speedup effect of the jump from 32 B to 64 B is indeed smaller
than it is for wired transmission, while the other jumps show a similar speedup as for wired
transmission. Over MQTT-SN, the block size increases show a larger effect for wireless than
for wired transmission. This may again be related to the long retransmission timeouts;
if there are fewer MQTT-SN messages to transmit, a smaller number of retransmission
timeouts is likely to occur. Thus, the speedup effect is boosted.
As expected, the energy consumption of a wireless update is also higher than the energy
consumption of an update over Ethernet (see Figure 5.5). Again, there is a strong correlation
between the update duration and energy consumption.
For wireless updates of multiple devices at once, we could conduct only preliminary experi-
ments which showed that the GNRC border router performs badly under load: We observed
update success rates of less than 50 %. In a minimal test setup consisting of one border
router and two wireless SUIT nodes, updating the nodes one after another was actually
significantly faster than updating them in parallel. The border router logs showed frequent
acknowledgement timeouts as well as sending delays due to a busy channel, which arise from
the wireless channel being shared between all updated devices. It may be possible to im-
prove the performance of the border router under heavy load by using the gnrc_netif_pktq
module, which implements a queue for outgoing packets that could not be transmitted suc-
cessfully on the first try. Additionally, the reliability of parallel over-the-air updates could
be increased by using a Media Access Control (MAC) protocol based on Time Division
Multiple Access (TDMA), and the shared channel could be better utilized using multicast
to efficiently transmit the update to multiple devices at once.

5.4 Conclusion
In conclusion, the evaluation of our implementation shows that it fulfils the goal that was
previously set, i.e. achieving the same or better performance in comparison with the CoAP
transport mechanism, with the exception of the issues discovered when transmitting updates
over the air.
The evaluation of the memory usage of our implementation shows that it requires only
slightly more flash memory (+0.4 KiB) and RAM (+1.2 KiB) than the CoAP transport

48

mechanism, mainly due to the code size and the transmit and receive buffers of the emcute
library. Thus, it is suitable for constrained Class 1 devices.
With regard to network traffic on the application layer and up, our MQTT-SN transport
mechanism causes slightly more traffic because the MQTT-SN headers sent per block are
larger than the CoAP headers by 6 B. Thus, the difference in traffic volume is almost
negligible for larger block sizes. In our design, where one MQTT-SN topic is used per
block, MQTT-SN sends twice as many packets as CoAP, and thus the lower-layer header
traffic is also doubled.
However, the evaluation of the update duration when transmitting over Ethernet shows
that our implementation is not slower than the CoAP transport mechanism. Both when
updating a single device and when updating seven devices in parallel, there is no significant
difference between the measured update durations. There is also no significant difference
between the update durations for updating a single device and updating seven devices in
parallel; thus, both transport mechanisms scale very well for up to seven devices. Increased
block sizes lead to shorter update durations; when doubling the block size, the speedup
is around 33 % on average. However, the speedup effect decreases with each block size
doubling, i.e. the update duration begins to plateau after a few doublings. The speedup
is less than 50 % because some parts of the update are not sped up by the increased block
size, e.g. signature verification. Additionally, the time required to write the update image
to flash memory is a lower bound on the update duration. For wireless transmission, the
added overhead of fragmentation decreases the speedup effect. As expected, our evaluation
shows that the wireless transmission is slower than the wired transmission. Over CoAP, it
is slower by 153 % on average. Over MQTT-SN, some issues were discovered; it is slower by
506 % on average. The main issue is missing retransmissions due to an unclear specification
and the high default timeout duration of 15 s. In all cases, the energy consumption is
strongly correlated to the update duration.
Since the evaluation results show no significant difference between CoAP and MQTT-SN
with regard to the duration and energy consumption of a firmware update when the updates
are run over a wired connection, the MQTT-SN transport mechanism is not inherently less
performant than the CoAP transport mechanism. However, it does not handle lost messages
as well as CoAP does, and thus performs worse for wireless transmission. Further work on
this issue could improve the performance of the MQTT-SN transport mechanism over the
air.
The main advantage of MQTT-SN over CoAP, which was discussed in Section 2.4 and
Section 3.1 where we compared the protocols generally, remains: It offers better support
for sleeping devices because it allows the devices to be in a low-power sleep mode most of
the time, during which the broker buffers messages, while CoAP requires the devices to be
constantly awake (except for radio duty cycling on the MAC layer) if they want to receive
requests. Thus, MQTT-SN allows a lower power consumption than CoAP during the idle
times: According to the data sheets, the Nucleo board’s STM32 microcontroller draws at
most 16.5 µW [67, p. 125] and the ATF86 transceiver typically draws 0.09 µW [66, p. 203]
in their lowest power modes. Thus, the low-power modes allow a vastly improved battery
life of the IoT device.

CHAPTER 6

Conclusion

In this chapter, we summarize our results and provide pointers for future works.

6.1 Summary
In this work, we investigated the issue of firmware updates for the IoT. Firstly, we sum-
marized the key features of the some of the most used application layer protocols for the
IoT: CoAP, MQTT and MQTT-SN. We compared the three protocols. The main difference
between CoAP and the MQTT protocols is the communication model used: CoAP uses a
request/response model similar to HTTP, while MQTT and MQTT-SN use a publish/sub-
scribe model. The main advantage of the publish/subscribe model is that all communication
occurs via a central broker. This allows MQTT-SN to easily support sleeping devices by
buffering messages at the broker, which is essential for conserving the limited battery power
of IoT devices. However, the transfer of large files such as firmware updates fits CoAP’s
request/response model more naturally, especially using block-wise transfer.
Secondly, we conducted a literature survey of comparative evaluations of the three applica-
tion layer protocols with regard to their achieved throughputs, energy consumption, traffic
overhead and ability to deal with packet loss. These evaluations show that TCP – which
is used by MQTT – is not especially suitable for the IoT due to the connection setup and
teardown overhead and its larger header size, even though its sliding window protocol for
retransmissions allows it to deal with packet loss better than the UDP-based protocols.
Only few previous evaluation results are available for MQTT-SN, but they suggest that it
can perform as well as CoAP.
Thirdly, we defined a list of requirements for software update mechanisms in the context
of the IoT. We surveyed other software update mechanisms besides SUIT, such as TUF,
Uptane, and UpKit, and analysed their main similarities and differences to SUIT. A com-
mon feature of all surveyed update mechanisms is the usage of cryptographic signatures
for authentication and integrity checking of the update images and metadata. There are
differences in the metadata formats and how exactly the cryptographic signatures are used.
For example, UpKit always uses two cryptographic signatures; one by the firmware vendor
and one by the update server that binds the update to a random nonce generated by the
IoT device to prevent replay attacks. In contrast, SUIT uses only a single signature and

50

uses optional expiration timestamps to prevent the replaying of an outdated update. Over-
all, SUIT offers the most general framework for software updates through the command
sequences that are included in the update manifests and can flexibly specify the steps of
the fetching, validation and installation process according to the use case.
Finally, we described the design and implementation of a new transport mechanism using
MQTT-SN for firmware updates over SUIT in RIOT. Previously, only a transport mecha-
nism using CoAP was available. We evaluated the implementation firstly with regard to its
flash memory and RAM requirements and network traffic volume. Our evaluation showed
that our new transport mechanism uses a similar amount of flash memory and RAM as the
CoAP transport mechanism. Because of the design choice of using a separate MQTT-SN
topic for each firmware block, our new transport mechanism causes slightly more network
traffic due to application layer header overhead. Secondly, we evaluated the implementa-
tion in the MIoT Lab testbed at the Otto von Guericke University Magdeburg. At the
time of writing, the testbed consisted of a maximum of seven usable nodes, which we used
for scalability tests. The testbed experiments showed that over Ethernet, there is no sig-
nificant difference of update duration and energy consumption between the two transport
mechanisms, i.e. MQTT-SN performs as well as CoAP. Thus, the implementation fulfils its
main goals. However, during over-the-air experiments using IEEE 802.15.4/6LoWPAN, we
discovered some issues with the MQTT-SN protocol specification that caused a relatively
poor performance of MQTT-SN: The specification is unclear on the issue of who is respon-
sible for retransmitting lost messages, and defines a relatively long default retransmission
timeout of 10 s to 15 s. Thus, further work is necessary to bring MQTT-SN’s performance
over wireless connections up to CoAP’s level.

6.2 Future Work
To improve upon this work, the performance issues of MQTT-SN when wirelessly trans-
mitting updates as described in Section 5.3 must be further investigated. Additionally, the
initial scalability experiments for over-the-air updates showed performance issues, which
should be investigated and fixed if possible. In particular, the usage of multicast to deliver
the update to multiple nodes at once could greatly improve the performance.
To achieve better performance, some design choices of the MQTT-SN transport mechanism
could be reconsidered. For example, the traffic of Register messages could be reduced.
In the current design, one Register is sent for each firmware manifest and image block
transmitted because each block uses a different topic. Instead, a single topic could be
used. This would require the update image and manifest to be published “live” during the
update, since retained messages cannot be used. This places additional load on the host
which publishes the update files. However, this may be a viable option if it were possible to
update a large amount of nodes at once. Alternatively, a MQTT-SN broker implementation
could be extended with a feature similar to CoAP’s block-wise transfer.
The scalability measurements presented were limited by the number of available nodes in
the testbed, which is seven at the time of writing. Once more testbed nodes are rolled out,
more extensive scalability experiments could be conducted.
Finally, future works could build on this work by implementing and evaluating further
transport mechanisms using other application layer protocols for the IoT.

Bibliography

[1] Ronald Eikenberg. IP-Kameras von Aldi als Sicherheits-GAU. Heise Security,
January 2016. https://www.heise.de/security/meldung/IP-Kameras-von-Aldi-
als-Sicherheits-GAU-3069735.html (last visited on Apr 01, 2021).

[2] Moshe Kol and Shlomi Oberman. CVE-2020-11896 RCE and CVE-2020-11898 Info
Leak (Ripple20). Technical report, JSOF Research Lab, June 2020. https://www.
jsof-tech.com/jsof_ripple20_technical_whitepaper_june20/.

[3] Ang Cui, Michael Costello, and Salvatore Stolfo. When Firmware Mod-
ifications Attack: A Case Study of Embedded Exploitation. 20th An-
nual Network & Distributed System Security Symposium, February 2013.
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/when-
firmware-modifications-attack-case-study-embedded-exploitation.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime
Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis,
Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Sea-
man, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the Mirai Botnet. In
26th {USENIX} security symposium ({USENIX} Security 17), pages 1093–1110, 2017.

[5] Bundesamt für Sicherheit in der Informationstechnik, Bonn, Germany. IT-
Grundschutz-Kompendium. SYS.4.4: Allgemeines IoT-Gerät. Reguvis Fachme-
dien GmbH, February 2020. https://www.bsi.bund.de/SharedDocs/Downloads/
DE/BSI/Grundschutz/Kompendium_Einzel_PDFs/07_SYS_IT_Systeme/SYS_4_4_
Allgemeines_IoT_Geraet_Edition_2020.pdf.

[6] Michael Fagan, Katerina N. Megas, Karen Scarfone, and Matthew Smith. IoT Device
Cybersecurity Capability Core Baseline. National Institute of Standards and Technol-
ogy, Gaithersburg, MD, USA, May 2020. https://doi.org/10.6028/NIST.IR.8259A.

[7] Directive (EU) 2019/771 of the European Parliament and of the Council of 20 May
2019 on certain aspects concerning contracts for the sale of goods, amending Regula-
tion (EU) 2017/2394 and Directive 2009/22/EC, and repealing Directive 1999/44/EC.
Official Journal of the European Union, 62, May 2019. https://eur-lex.europa.eu/
eli/dir/2019/771/oj.

[8] Bundesministerium der Justiz und für Verbraucherschutz. Entwurf eines Geset-
zes zur Regelung des Verkaufs von Sachen mit digitalen Elementen und an-
derer Aspekte des Kaufvertrags, December 2020. https://bmjv.de/SharedDocs/
Gesetzgebungsverfahren/DE/Warenkaufrichtlinie.html.

https://www.heise.de/security/meldung/IP-Kameras-von-Aldi-als-Sicherheits-GAU-3069735.html
https://www.heise.de/security/meldung/IP-Kameras-von-Aldi-als-Sicherheits-GAU-3069735.html
https://www.jsof-tech.com/jsof_ripple20_technical_whitepaper_june20/
https://www.jsof-tech.com/jsof_ripple20_technical_whitepaper_june20/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/when-firmware-modifications-attack-case-study-embedded-exploitation
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/when-firmware-modifications-attack-case-study-embedded-exploitation
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs/07_SYS_IT_Systeme/SYS_4_4_Allgemeines_IoT_Geraet_Edition_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs/07_SYS_IT_Systeme/SYS_4_4_Allgemeines_IoT_Geraet_Edition_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium_Einzel_PDFs/07_SYS_IT_Systeme/SYS_4_4_Allgemeines_IoT_Geraet_Edition_2020.pdf
https://doi.org/10.6028/NIST.IR.8259A
https://eur-lex.europa.eu/eli/dir/2019/771/oj
https://eur-lex.europa.eu/eli/dir/2019/771/oj
https://bmjv.de/SharedDocs/Gesetzgebungsverfahren/DE/Warenkaufrichtlinie.html
https://bmjv.de/SharedDocs/Gesetzgebungsverfahren/DE/Warenkaufrichtlinie.html

52

[9] Bruce Schneier. The Internet of Things Is Wildly Insecure – And Often Unpatch-
able, January 2014. https://www.schneier.com/essays/archives/2014/01/the_
internet_of_thin.html (last visited on Oct 17, 2020).

[10] Iulia Ion, Rob Reeder, and Sunny Consolvo. “...no one can hack my mind”: Comparing
Expert and Non-Expert Security Practices. In Eleventh Symposium On Usable Privacy
and Security ({SOUPS} 2015), pages 327–346, 2015.

[11] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT Goes Nuclear:
Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 195–212. Institute of Electrical and Electronics Engineers (IEEE), 2017.
https://doi.org/10.1109/SP.2017.14.

[12] Carsten Bormann, Mehmet Ersue, and Ari Keränen. Terminology for Constrained-
Node Networks. RFC 7228, May 2014. https://rfc-editor.org/rfc/rfc7228.txt.

[13] Brendan Moran, Hannes Tschofenig, David Brown, and Milosch Meriac. A Firmware
Update Architecture for Internet of Things. RFC 9019, April 2021. https://rfc-
editor.org/rfc/rfc9019.txt.

[14] Brendan Moran, Hannes Tschofenig, Henk Birkholz, and Koen Zandberg. A Con-
cise Binary Object Representation (CBOR)-based Serialization Format for the Soft-
ware Updates for Internet of Things (SUIT) Manifest. Internet-Draft draft-ietf-suit-
manifest-12, Internet Engineering Task Force, February 2021. Work in Progress.
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-12.

[15] Brendan Moran, Hannes Tschofenig, and Henk Birkholz. A Manifest Information
Model for Firmware Updates in IoT Devices. Internet-Draft draft-ietf-suit-information-
model-11, Internet Engineering Task Force, April 2021. Work in Progress. https:
//datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-11.

[16] Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch, Mesut Gunes, and Thomas
Schmidt. RIOT: One OS to Rule Them All in the IoT. [Research Report] RR-8176,
INRIA, 2012. https://hal.inria.fr/hal-00768685v3.

[17] Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne,
Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. Standardized Protocol
Stack for the Internet of (Important) Things. IEEE Communications Surveys & Tuto-
rials, 15(3):1389–1406, 2012. https://doi.org/10.1109/SURV.2012.111412.00158.

[18] Zhengguo Sheng, Shusen Yang, Yifan Yu, Athanasios V. Vasilakos, Julie A. Mccann,
and Kin K. Leung. A Survey on the IETF Protocol Suite for the Internet of Things:
Standards, Challenges, and Opportunities. IEEE Wireless Communications, 20(6):91–
98, 2013. https://doi.org/10.1109/MWC.2013.6704479.

[19] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar.
Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, September
2007. https://rfc-editor.org/rfc/rfc4944.txt.

[20] Pascal Thubert and Jonathan Hui. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282, September 2011. https://rfc-editor.
org/rfc/rfc6282.txt.

[21] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Pro-

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://doi.org/10.1109/SP.2017.14
https://rfc-editor.org/rfc/rfc7228.txt
https://rfc-editor.org/rfc/rfc9019.txt
https://rfc-editor.org/rfc/rfc9019.txt
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-12
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-11
https://datatracker.ietf.org/doc/html/draft-ietf-suit-information-model-11
https://hal.inria.fr/hal-00768685v3
https://doi.org/10.1109/SURV.2012.111412.00158
https://doi.org/10.1109/MWC.2013.6704479
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc6282.txt
https://rfc-editor.org/rfc/rfc6282.txt

53

tocol (CoAP). RFC 7252, June 2014. https://rfc-editor.org/rfc/rfc7252.txt.
[22] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol Ver-

sion 2 (HTTP/2). RFC 7540, May 2015. https://rfc-editor.org/rfc/rfc7540.
txt.

[23] Ramon Caceres and Liviu Iftode. The Effects of Mobility on Reliable Transport Proto-
cols. In 14th International Conference on Distributed Computing Systems, pages 12–20.
IEEE, 1994. https://doi.org/10.1109/ICDCS.1994.302385.

[24] Carsten Bormann and Zach Shelby. Block-Wise Transfers in the Constrained Appli-
cation Protocol (CoAP). RFC 7959, August 2016. https://rfc-editor.org/rfc/
rfc7959.txt.

[25] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta. MQTT Version 5.0.
OASIS Standard, March 2019. https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.pdf.

[26] Andy Stanford-Clark and Hong Linh Truong. MQTT For Sensor Networks (MQTT-
SN) Protocol Specification (Version 1.2). International Business Machines Corporation
(IBM), November 2013. https://www.oasis-open.org/committees/download.php/
66091/MQTT-SN_spec_v1.2.pdf.

[27] Michael Koster, Ari Keränen, and Jaime Jimenez. Publish-Subscribe Broker for the
Constrained Application Protocol (CoAP). Internet-Draft draft-ietf-core-coap-pubsub-
09, Internet Engineering Task Force, September 2019. Work in Progress. https://
datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09.

[28] Eclipse IoT Working Group, AGILE IoT, Institute of Electrical and Electron-
ics Engineers, and Open Mobile Alliance. IoT Developer Survey Results, April
2018. https://iot.eclipse.org/community/resources/iot-surveys/assets/
iot-developer-survey-2018.pdf (last visited on Feb 19, 2021).

[29] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. A Survey
of Communication Protocols for Internet of Things and Related Challenges of Fog and
Cloud Computing Integration. ACM Computing Surveys (CSUR), 51(6):1–29, 2019.
https://doi.org/10.1145/3292674.

[30] Markel Iglesias-Urkia, Adrián Orive, and Aitor Urbieta. Analysis of CoAP Imple-
mentations for Industrial Internet of Things: A Survey. Procedia Computer Science,
109:188–195, 2017. https://doi.org/10.1016/j.procs.2017.05.323.

[31] Pegah Nikbakht Bideh, Jonathan Sönnerup, and Martin Hell. Energy Consumption for
Securing Lightweight IoT Protocols. In Proceedings of the 10th International Confer-
ence on the Internet of Things, pages 1–8, 2020. https://doi.org/10.1145/3410992.
3411008.

[32] Matteo Collina, Marco Bartolucci, Alessandro Vanelli-Coralli, and Giovanni Emanuale
Corazza. Internet of Things Application Layer Protocol Analysis over Error and Delay
Prone Links. In 2014 7th Advanced Satellite Multimedia Systems Conference and the
13th Signal Processing for Space Communications Workshop (ASMS/SPSC), pages
398–404. IEEE, 2014. https://doi.org/10.1109/ASMS-SPSC.2014.6934573.

[33] Dae-Hyeok Mun, Minh Le Dinh, and Young-Woo Kwon. An Assessment of Internet of

https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7540.txt
https://rfc-editor.org/rfc/rfc7540.txt
https://doi.org/10.1109/ICDCS.1994.302385
https://rfc-editor.org/rfc/rfc7959.txt
https://rfc-editor.org/rfc/rfc7959.txt
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://www.oasis-open.org/committees/download.php/66091/MQTT-SN_spec_v1.2.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-09
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2018.pdf
https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2018.pdf
https://doi.org/10.1145/3292674
https://doi.org/10.1016/j.procs.2017.05.323
https://doi.org/10.1145/3410992.3411008
https://doi.org/10.1145/3410992.3411008
https://doi.org/10.1109/ASMS-SPSC.2014.6934573

54

Things Protocols for Resource-Constrained Applications. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), volume 1, pages 555–
560. IEEE, 2016. https://doi.org/10.1109/COMPSAC.2016.51.

[34] Stefan Mijovic, Erion Shehu, and Chiara Buratti. Comparing Application Layer Pro-
tocols for the Internet of Things via Experimentation. In 2016 IEEE 2nd Interna-
tional Forum on Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), pages 1–5. IEEE, 2016. https://doi.org/10.1109/RTSI.
2016.7740559.

[35] Anna Larmo, Felipe Del Carpio, Pontus Arvidson, and Roman Chirikov. Comparison
of CoAP and MQTT Performance Over Capillary Radios. In 2018 Global Internet of
Things Summit (GIoTS), pages 1–6, 2018. https://doi.org/10.1109/GIOTS.2018.
8534576.

[36] Cenk Gündoğan, Peter Kietzmann, Martine Lenders, Hauke Petersen, Thomas C
Schmidt, and Matthias Wählisch. NDN, CoAP, and MQTT: A Comparative Measure-
ment Study in the IoT. In Proceedings of the 5th ACM Conference on Information-
Centric Networking, pages 159–171, 2018. https://doi.org/10.1145/3267955.
3267967.

[37] Cédric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie Mitton,
Thomas Noel, Roger Pissard-Gibollet, Frédéric Saint-Marcel, Guillaume Schreiner,
Julien Vandaele, and Thomas Watteyne. FIT IoT-LAB: A Large Scale Open Ex-
perimental IoT Testbed. Milan, Italy, December 2015. https://hal.inria.fr/hal-
01213938.

[38] Yuang Chen and Thomas Kunz. Performance Evaluation of IoT Protocols under a
Constrained Wireless Access Network. In 2016 International Conference on Selected
Topics in Mobile & Wireless Networking (MoWNeT), pages 1–7. IEEE, 2016. https:
//doi.org/10.1109/MoWNet.2016.7496622.

[39] Francisco Javier Acosta Padilla, Emmanuel Baccelli, Thomas Eichinger, and Kaspar
Schleiser. The Future of IoT Software Must be Updated. IAB Workshop on Internet
of Things Software Update (IoTSU), June 2016.

[40] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal
Dutta, and Philip Levis. Multiprogramming a 64kB Computer Safely and Efficiently.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
pages 234–251. Association for Computing Machinery, 2017. https://doi.org/10.
1145/3132747.3132786.

[41] Jan Bauwens, Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, and Eli De
Poorter. Over-the-Air Software Updates in the Internet of Things: An Overview
of Key Principles. IEEE Communications Magazine, 58(2):35–41, 2020. https:
//doi.org/10.1109/MCOM.001.1900125.

[42] Luca Mottola, Gian Pietro Picco, and Adil Amjad Sheikh. FiGaRo: Fine-Grained
Software Reconfiguration for Wireless Sensor Networks. In European Conference on
Wireless Sensor Networks, pages 286–304. Springer, 2008.

[43] International Organization for Standardization. ISO/IEC 27000:2018 – Informa-
tion technology – Security techniques – Information security management systems

https://doi.org/10.1109/COMPSAC.2016.51
https://doi.org/10.1109/RTSI.2016.7740559
https://doi.org/10.1109/RTSI.2016.7740559
https://doi.org/10.1109/GIOTS.2018.8534576
https://doi.org/10.1109/GIOTS.2018.8534576
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1145/3267955.3267967
https://hal.inria.fr/hal-01213938
https://hal.inria.fr/hal-01213938
https://doi.org/10.1109/MoWNet.2016.7496622
https://doi.org/10.1109/MoWNet.2016.7496622
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1109/MCOM.001.1900125
https://doi.org/10.1109/MCOM.001.1900125

55

– Overview and vocabulary, February 2018. https://standards.iso.org/ittf/
PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip.

[44] Dustin Frisch, Sven Reißmann, and Christian Pape. An Over the Air Update Mecha-
nism for ESP8266 Microcontrollers. ICSNC 2017: The Twelfth International Confer-
ence on Systems and Networks Communications, 2017.

[45] Hannes Tschofenig and Stephen Farrell. Report from the Internet of Things Software
Update (IoTSU) Workshop 2016. RFC 8240, September 2017. https://rfc-editor.
org/rfc/rfc8240.txt.

[46] Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and Em-
manuel Baccelli. Secure Firmware Updates for Constrained IoT Devices Using Open
Standards: A Reality Check. IEEE Access, 7:71907–71920, 2019. https://doi.org/
10.1109/ACCESS.2019.2919760.

[47] Klint Finley. Nest’s Hub Shutdown Proves You’re Crazy to Buy Into the Inter-
net of Things, May 2016. https://www.wired.com/2016/04/nests-hub-shutdown-
proves-youre-crazy-buy-internet-things/ (last visited on Mar 03, 2021).

[48] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine. Survivable Key
Compromise in Software Update Systems. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, pages 61–72, 2010. https://doi.org/
10.1145/1866307.1866315.

[49] Justin Cappos, Justin Samuel, Scott Baker, and John H. Hartman. A Look in the
Mirror: Attacks on Package Managers. In Proceedings of the 15th ACM Conference
on Computer and Communications Security, pages 565–574, 2008. https://doi.org/
10.1145/1455770.1455841.

[50] Anthony Bellissimo, John Burgess, and Kevin Fu. Secure Software Updates: Disap-
pointments and New Challenges. In HotSec ’06: 1st USENIX Workshop on Hot Topics
in Security, 2006.

[51] Trishank Karthik, Akan Brown, Sebastien Awwad, Damon McCoy, Russ Bielawski,
Cameron Mott, Sam Lauzon, André Weimerskirch, and Justin Cappos. Uptane: Se-
curing Software Updates for Automobiles. In International Conference on Embedded
Security in Car, pages 1–11, 2016.

[52] Antonio Langiu, Carlo Alberto Boano, Markus Schuß, and Kay Römer. UpKit:
An Open-Source, Portable, and Lightweight Update Framework for Constrained IoT
Devices. 39th IEEE International Conference on Distributed Computing Systems
(ICDCS), July 2019.

[53] Wassim Itani, Ayman Kayssi, and Ali Chehab. PETRA: A Secure and Energy-Efficient
Software Update Protocol for Severely-Constrained Network Devices. InQ2SWinet ’09:
Proceedings of the 5th ACM Symposium on QoS and Security for Wireless and Mobile
Networks, pages 37–43, October 2009. https://doi.org/10.1145/1641944.1641952.

[54] Cory Doctorow. Philips Pushes Lightbulb Firmware Update That Locks Out Third-
Party Bulbs, December 2015. https://boingboing.net/2015/12/14/philips-
pushes-lightbulb-firmw.html (last visited on Mar 10, 2021).

[55] Cory Doctorow. HP Detonates Its Timebomb: Printers Stop Accepting Third Party Ink

https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c073906_ISO_IEC_27000_2018_E.zip
https://rfc-editor.org/rfc/rfc8240.txt
https://rfc-editor.org/rfc/rfc8240.txt
https://doi.org/10.1109/ACCESS.2019.2919760
https://doi.org/10.1109/ACCESS.2019.2919760
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://doi.org/10.1145/1866307.1866315
https://doi.org/10.1145/1866307.1866315
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.1145/1455770.1455841
https://doi.org/10.1145/1641944.1641952
https://boingboing.net/2015/12/14/philips-pushes-lightbulb-firmw.html
https://boingboing.net/2015/12/14/philips-pushes-lightbulb-firmw.html

56

En Masse, September 2016. https://boingboing.net/2016/09/19/hp-detonates-
its-timebomb-pri.html (last visited on Mar 10, 2021).

[56] Ashley Carman. Smart Lock Vendor Accidentally Bricks Its Own Locks Through
Firmware Update, August 2017. https://www.theverge.com/circuitbreaker/
2017/8/15/16151798/lockstate-6i-software-update-break-lock (last visited on
Mar 10, 2021).

[57] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and Matthias Wäh-
lisch. RIOT: An Open Source Operating System for Low-End Embedded Devices in
the IoT. IEEE Internet of Things Journal, 5(6):4428–4440, 2018. https://doi.org/
10.1109/jiot.2018.2815038.

[58] Brendan Moran, Hannes Tschofenig, Henk Birkholz, and Koen Zandberg. A Con-
cise Binary Object Representation (CBOR)-based Serialization Format for the Soft-
ware Updates for Internet of Things (SUIT) Manifest. Internet-Draft draft-ietf-
suit-manifest-09, Internet Engineering Task Force, July 2020. Work in Progress.
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-09.

[59] Carsten Bormann and Paul E. Hoffman. Concise Binary Object Representation
(CBOR). RFC 7049, October 2013. https://rfc-editor.org/rfc/rfc7049.txt.

[60] Jim Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152, July 2017.
https://rfc-editor.org/rfc/rfc8152.txt.

[61] The Update Framework Specification (Version: 1.0.17), December
2020. https://github.com/theupdateframework/specification/blob/
9d21a28ff143d323014c92c32f235383f3d3f5b6/tuf-spec.md.

[62] N. Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and
Gene Tsudik. ASSURED: Architecture for Secure Software Update of Realistic Em-
bedded Devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 37(11), November 2018.

[63] Donald E. Eastlake 3rd, Steve Crocker, and Jeffrey I. Schiller. Randomness Require-
ments for Security. RFC 4086, June 2005. https://rfc-editor.org/rfc/rfc4086.
txt.

[64] Silvie Schmidt, Mathias Tausig, Manuel Koschuch, Matthias Hudler, Georg Simhandl,
Patrick Puddu, and Zoran Stojkovic. How Little is Enough? Implementation and
Evaluation of a Lightweight Secure Firmware Update Process for the Internet of Things.
Proceedings of the 3rd International Conference on Internet of Things, Big Data and
Security (IoTBDS 2018), pages 63–72, 2019.

[65] Kai Kientopf, Marian Buschsieweke, and Mesut Güneş. Technical Report: Designing a
Testbed for Wireless Communication Research on Embedded Devices. In 18. GI/ITG
KuVS FachGespräch SensorNetze (FGSN 2019), pages 41–44, 2019.

[66] Atmel Corporation. Atmel AT86RF215 Datasheet (Revision 42415E), May 2016.
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42415-WIRELESS-
AT86RF215_Datasheet.pdf (last visited on Jun 01, 2021).

[67] STMicroelectronics. STM32F765xx STM32F767xx STM32F768Ax STM32F769xx

https://boingboing.net/2016/09/19/hp-detonates-its-timebomb-pri.html
https://boingboing.net/2016/09/19/hp-detonates-its-timebomb-pri.html
https://www.theverge.com/circuitbreaker/2017/8/15/16151798/lockstate-6i-software-update-break-lock
https://www.theverge.com/circuitbreaker/2017/8/15/16151798/lockstate-6i-software-update-break-lock
https://doi.org/10.1109/jiot.2018.2815038
https://doi.org/10.1109/jiot.2018.2815038
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-09
https://rfc-editor.org/rfc/rfc7049.txt
https://rfc-editor.org/rfc/rfc8152.txt
https://github.com/theupdateframework/specification/blob/9d21a28ff143d323014c92c32f235383f3d3f5b6/tuf-spec.md
https://github.com/theupdateframework/specification/blob/9d21a28ff143d323014c92c32f235383f3d3f5b6/tuf-spec.md
https://rfc-editor.org/rfc/rfc4086.txt
https://rfc-editor.org/rfc/rfc4086.txt
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42415-WIRELESS-AT86RF215_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42415-WIRELESS-AT86RF215_Datasheet.pdf

57

Datasheet (Revision 7), February 2021. https://www.st.com/resource/en/
datasheet/stm32f767zi.pdf (last visited on Jun 01, 2021).

https://www.st.com/resource/en/datasheet/stm32f767zi.pdf
https://www.st.com/resource/en/datasheet/stm32f767zi.pdf

Appendix

A.1 List of Software Versions Used

Name and Description Version
Main software

aiocoap (Python CoAP implementation) 0.4.1
libcoap (C CoAP implementation) 4.2.1
RIOT (OS for IoT devices) https://github.com/RIOT-OS/RIOT at

commit 837b55f (Feb 1, 2021)
RSMB (MQTT/MQTT-SN broker) https://github.com/eclipse/

mosquitto.rsmb at commit 36fd4ba
(Dec 21, 2020) + cherry-picked commit
6fed013 from https://github.com/
eclipse/mosquitto.rsmb/pull/32

Development

Docker (Virtualisation tool) 19.03.8
riot/riotbuild (Docker image for build-
ing RIOT applications)

sha256-0673aacb9dfd9b0a00f7695b60dbb
c0ce48437e9fc354904fde92611dea9fde2

Evaluation

Bloaty (Size profiler for binary files) https://github.com/google/bloaty at
commit c41086c (Nov 19, 2020)

PyShark (Python wrapper for Wireshark) 0.4.3
Python 3.8.5 (locally + testbed server),

3.7.3 (testbed nodes)
Wireshark (Network traffic capture and
analysis tool)

3.4.2-1 ubuntu20.04.0+wiresharkdevstable1

https://github.com/RIOT-OS/RIOT
https://github.com/eclipse/mosquitto.rsmb
https://github.com/eclipse/mosquitto.rsmb
https://github.com/eclipse/mosquitto.rsmb/pull/32
https://github.com/eclipse/mosquitto.rsmb/pull/32
https://github.com/google/bloaty

60 Appendix

A.2 List of Reported Issues and Pull Requests Related to This Thesis
A.2.1 Reported Issues

Description Link Reported on Status
Paho MQTT-SN Gateway

Gateway assigns non-zero
topic ID for wildcard top-
ics

https://github.com/
eclipse/paho.mqtt-sn.
embedded-c/issues/221

Dec 9, 2020 Fixed on
May 13,
2021

Crash (segmentation
fault) on PUBLISH when
MAX_TOPIC_PAR_CLIENT is
exceeded

https://github.com/
eclipse/paho.mqtt-sn.
embedded-c/issues/225

Jan 18, 2021 Fixed on
May 13,
2021

Crash (segmentation fault)
when getaddrinfo fails

https://github.com/
eclipse/paho.mqtt-sn.
embedded-c/issues/229

Feb 4, 2021 Fixed on
May 12,
2021

Gateway sends PUBLISH
using topic ID for which
the REGISTER was re-
jected

https://github.com/
eclipse/paho.mqtt-sn.
embedded-c/issues/230

Feb 4, 2021 Fixed on
May 13,
2021

A.2.2 Pull Requests

Description Link Submitted on Status
RIOT

net/emcute: Allow RE-
TAIN flag to be set on in-
coming PUBLISHs

https://github.com/
RIOT-OS/RIOT/pull/
16326

Apr 13, 2021 Merged on
Jun 28,
2021

Paho MQTT-SN Gateway

Send DISCONNECT when
incoming message can’t be
mapped to a client

https://github.com/
eclipse/paho.mqtt-
sn.embedded-c/pull/222

Dec 11, 2020 Closed on
May 27,
2021

mqtt-sn-tools

Bugfix: Use msg ID 0 for
QoS levels < 1

https://github.
com/njh/mqtt-sn-
tools/pull/46

Dec 4, 2020 Merged on
Jan 15,
2021

https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/221
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/221
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/221
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/225
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/225
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/225
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/229
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/229
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/229
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/230
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/230
https://github.com/eclipse/paho.mqtt-sn.embedded-c/issues/230
https://github.com/RIOT-OS/RIOT/pull/16326
https://github.com/RIOT-OS/RIOT/pull/16326
https://github.com/RIOT-OS/RIOT/pull/16326
https://github.com/eclipse/paho.mqtt-sn.embedded-c/pull/222
https://github.com/eclipse/paho.mqtt-sn.embedded-c/pull/222
https://github.com/eclipse/paho.mqtt-sn.embedded-c/pull/222
https://github.com/njh/mqtt-sn-tools/pull/46
https://github.com/njh/mqtt-sn-tools/pull/46
https://github.com/njh/mqtt-sn-tools/pull/46

I herewith assure that I wrote the present thesis titled Software Updates for the Internet of
Things: An Extension and Evaluation of the SUIT Implementation in RIOT independently,
that the thesis has not been partially or fully submitted as graded academic work and that
I have used no other means than the ones indicated. I have indicated all parts of the work
in which sources are used according to their wording or to their meaning.
I am aware of the fact that violations of copyright can lead to injunctive relief and claims
for damages of the author as well as a penalty by the law enforcement agency.

Magdeburg, July 1, 2021
(Vera Clemens)

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Background: Application Layer Protocols for the Internet of Things
	Constrained Application Protocol (CoAP)
	Message Queuing Telemetry Transport (MQTT)
	MQTT for Sensor Networks (MQTT-SN)
	Comparison

	Related Work
	Comparative Evaluations of CoAP, MQTT and MQTT-SN
	Requirements for Software Update Mechanisms
	Software Update Mechanisms
	Software Updates for Internet of Things (SUIT)
	Others
	Comparison

	Thesis Contribution: A New Transport Mechanism for SUIT Using MQTT-SN
	Design
	Choice of Application Layer Protocol
	Design of the Transport Mechanism

	Implementation
	Choice of MQTT-SN Implementations
	Implementation of the Transport Mechanism

	Thesis Outcome: Evaluation and Comparison
	Setup
	Methods
	Results
	Conclusion

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix
	List of Software Versions Used
	List of Reported Issues and Pull Requests Related to This Thesis
	Reported Issues
	Pull Requests

